An efficient approach for anti-jamming in IRNSS receivers using improved PSO based parametric wavelet packet thresholding

Springer Science and Business Media LLC - Tập 3 - Trang 1-20 - 2022
Jacob Silva Lorraine Kambham1, Madhu Ramarakula1
1Department of ECE, University College of Engineering, JNTUK, Kakinada, India

Tóm tắt

The Indian Regional Navigation Satellite System provides accurate positioning service to the users within and around India, extending up to 1500 km. However, when a receiver encounters a Continuous Wave Interference, its positioning accuracy degrades, or sometimes it even fails to work. Wavelet Packet Transform (WPT) is the most widely used technique for anti-jamming in Global Navigation Satellite System receivers. But the conventional method suffers from threshold drifting and employs inflexible thresholding functions. So, to address these issues, an efficient approach using Improved Particle Swarm Optimization based Parametric Wavelet Packet Thresholding (IPSO-PWPT) is proposed. Firstly, a new parameter adaptive thresholding function is constructed. Then, a new form of inertia weight is presented to enhance the performance of PSO. Later, IPSO is used to optimize the key parameters of WPT. Finally, the implementation of the IPSO-PWPT anti-jamming algorithm is discussed. The performance of the proposed technique is evaluated for various performance metrics in four jamming environments. The evaluation results manifest the proposed method’s efficacy compared to the conventional WPT in terms of anti-jamming capability. Also, the results show the ability of the new thresholding function to process various signals effectively. Furthermore, the findings reveal that the improved PSO outperforms the variants of PSO.

Tài liệu tham khảo

Abedi, M., Rezaei, M. J., & Mosavi, M. R. (2018). Accurate interference mitigation in Global Positioning System receivers based on double-step Short-Time Fourier Transform. Circuits, Systems, and Signal Processing, 37(6), 2450–2470. https://doi.org/10.1007/s00034-017-0670-y Anyaegbu, E., Brodin, G., Cooper, J., Aguado, E., & Boussakta, S. (2008). An integrated pulsed interference mitigation for GNSS receivers. The Journal of Navigation, 61(2), 239–255. https://doi.org/10.1017/S0373463307004572 Bansal, J. C., Singh, P. K., Saraswat, M., Verma, A., Jadon, S. S., & Abraham, A. (2011). Inertia weight strategies in Particle Swarm Optimization. In: Proceedings of the Third World Congress on Nature and Biologically Inspired Computing, Salamanca, Spain, 633–640. https://doi.org/10.1109/NaBIC.2011.6089659 Borio, D. (2021). GNSS interference mitigation: A measurement and position domain assessment. Navigation, 68(1), 93–114. https://doi.org/10.1002/navi.391 Borio, D., Camoriano, L., & Lo Presti, L. (2008). Two-pole and multi-pole notch filters: A computationally effective solution for GNSS interference detection and mitigation. IEEE Systems Journal, 2(1), 38–47. https://doi.org/10.1109/ITST.2007.4295837 Capozza, P. T., Holland, B. J., Hopkinson, T. M., & Landrau, R. L. (2000). A single-chip narrow-band frequency-domain excisor for a Global Positioning System (GPS) receiver. IEEE Journal of Solid-State Circuits, 35(3), 401–411. https://doi.org/10.1109/4.826823 Chatterjee, A., & Siarry, P. (2006). Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Computers and Operations Research, 33(3), 859–871. https://doi.org/10.1016/j.cor.2004.08.012 Chien, Y. R. (2018). Wavelet packet transform-based anti-jamming scheme with new threshold selection algorithm for GPS receivers. Journal of the Chinese Institute of Engineers, 41(3), 181–185. https://doi.org/10.1080/02533839.2018.1454857 Chien, Y. R., Chen, P. Y., & Fang, S. H. (2017). Novel anti-jamming algorithm for GNSS receivers using wavelet-packet-transform-based adaptive predictors. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E100(A(2)), 602–610. https://doi.org/10.1587/transfun.E100.A.602 Dey, A., Singh, P., & Sharma, N. (2019) Performance evaluation of tracking loop under RF interference using NavIC software-receiver. In: Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 1050–1052. https://doi.org/10.1109/APMC46564.2019.9038472 Dey, A., Iyer, K., & Sharma, N. (2021) S-band interference detection and mitigation using a vector tracking-based NavIC software receiver. In: Proceedings of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS+ 2021. St. Louis, Missouri, 3464–3476 Eberhart, R. C., & Shi, Y. (2001). Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546). Seoul, Korea (South), 94–100. https://doi.org/10.1109/CEC.2001.934376 El-Dahshan, E.-S.A. (2011). Genetic algorithm and wavelet hybrid scheme for ECG signal denoising. Telecommunication Systems, 46(3), 209–215. https://doi.org/10.1007/s11235-010-9286-2 Fadaei, N. (2016). Detection, Characterization and Mitigation of GNSS Jamming Interference Using Pre-Correlation Methods (Unpublished master's thesis). University of Calgary, Calgary, AB. https://prism.ucalgary.ca/bitstream/handle/11023/2894/ucalgary_2016_fadaei_nahal.pdf?sequence=3&isAllowed=y Gao, G. X., Sgammini, M., Lu, M., & Kubo, N. (2016). Protecting GNSS receivers from jamming and interference. In: Proceedings of the IEEE, 104(6), 1327–1338. https://doi.org/10.1109/JPROC.2016.2525938 He, C., Xing, J., Li, J., Yang, Q., & Wang, R. (2015). A new wavelet thresholding function based on Hyperbolic tangent function. Mathematical Problems in Engineering, 2015, 1–10. https://doi.org/10.1155/2015/528656 Jagiwala, D. D., & Shah, S. N. (2021). Wavelet-based interference perception and reduction approach for NB and CW RFI on NavIC S-band Signals. In: 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). Bangalore, India, 1–6. https://doi.org/10.1109/CONECCT52877.2021.9622729 Jagiwala, D. D., & Shah, S. N. (2019). Perception and reduction of Wi-Fi interference on NavIC signals. IET Radar, Sonar and Navigation, 13(3), 352–356. https://doi.org/10.1049/iet-rsn.2018.5291 Jones, K. O., & Boizanté, G. (2011). Comparison of firefly algorithm optimisation, particle swarm optimisation and differential evolution. In: Proceedings of the 12th International Conference on Computer Systems and Technologies-CompSysTech’2011, 578, 191–197. https://doi.org/10.1145/2023607.2023640 Kaiser, G. (1994). A Friendly guide to wavelets (1st ed.). Birkhäuser Boston, MA. https://doi.org/10.1007/978-0-8176-8111-1. Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimisation. In: Proceedings of ICNN’95 - International Conference on Neural Networks. Perth, WA, Australia, 1942–1948. https://doi.org/10.1007/978-3-030-61111-8_2 Kumar, C. H. J., & Veerakumari, M. (2012). Load forecasting of Andhra Pradesh grid using PSO, DE algorithms. International Journal of Advanced Research in Computer Engineering and Technology, 1(9), 179–184. Li, M., Dempster, A. G., Balaei, A. T., Rizos, C., & Wang, F. (2011). Switchable beam steering/null steering algorithm for CW interference mitigation in GPS C/A code receivers. IEEE Transactions on Aerospace and Electronic Systems, 47(3), 1564–1579. https://doi.org/10.1109/TAES.2011.5937250 Lineswala, P. L., Jagiwala, D. D., & Shah, S. N. (2019). Hypothesis test-based detection of Wi-Fi interference on NavIC/IRNSS S-band signal. Journal of Navigation, 72(4), 931–947. https://doi.org/10.1017/S037346331900002X Lineswala, P. L., & Shah, S. N. (2019). Performance analysis of different interference detection techniques for navigation with Indian constellation. IET Radar, Sonar and Navigation, 13(8), 1207–1213. https://doi.org/10.1049/iet-rsn.2019.0091 Lv, Q., & Qin, H. (2019). An improved method based on Time-Frequency distribution to detect time-varying interference for GNSS receivers with single antenna. IEEE Access, 7, 38608–38617. https://doi.org/10.1109/ACCESS.2019.2906262 Mao, W. L. (2008). Novel SREKF-based recurrent neural predictor for narrowband/FM interference rejection in GPS. AEU International Journal of Electronics and Communications, 62(3), 216–222. https://doi.org/10.1016/j.aeue.2007.04.002 Mirjalili, S., & Hashim, S. Z. M. (2010). A new hybrid PSOGSA algorithm for function optimization. In: 2010 International Conference on Computer and Information Application.Tianjin, China, 374–377. https://doi.org/10.1109/ICCIA.2010.6141614 Morales-ferre, R., Richter, P., Falletti, E., De la Fuente, A., & Lohan, E. S. (2019). A survey on coping with intentional interference in satellite navigation for manned and unmanned aircraft. IEEE Communications Surveys and Tutorials, 22(1), 249–291. https://doi.org/10.1109/COMST.2019.2949178 Mosavi, M. R., Pashaian, M., Rezaei, M. J., & Mohammadi, K. (2015). Jamming mitigation in global positioning system receivers using wavelet packet coefficients thresholding. IET Signal Processing, 9(5), 457–464. https://doi.org/10.1049/iet-spr.2014.0280 Mosavi, M. R., Rezaei, M. J., Pashaian, M., & Moghaddasi, M. S. (2017). A fast and accurate anti-jamming system based on wavelet packet transform for GPS receivers. GPS Solutions, 21(2), 415–426. https://doi.org/10.1007/s10291-016-0535-z Musumeci, L., & Dovis, F. (2013). Performance assessment of wavelet based techniques in mitigating narrow-band interference. In: 2013 International Conference on Localization and GNSS, ICL-GNSS. Turin, Italy, 1–6. https://doi.org/10.1109/ICL-GNSS.2013.6577264 Musumeci, L., & Dovis, F. (2014). Use of the wavelet transform for interference detection and mitigation in global navigation satellite systems. International Journal of Navigation and Observation, 2014, 1–14. https://doi.org/10.1155/2014/262186 Nisha, S. S., & Mohideen, S. K. (2016). Wavelet coefficients thresholding techniques for denoising MRI images. Indian Journal of Science and Technology, 9(28), 1–8. https://doi.org/10.17485/ijst/2016/v9i28/93872 Ouyang, X., & Amin, M. G. (2001). Short-time Fourier transform receiver for nonstationary interference excision in direct sequence spread spectrum communications. IEEE Transactions on Signal Processing, 49(4), 851–863. https://doi.org/10.1109/78.912929 Pashaian, M., Mosavi, M. R., Moghaddasi, M. S., & Rezaei, M. J. (2016). A novel interference rejection method for GPS receivers. Iranian Journal of Electrical and Electronic Engineering, 12(1), 9–20. https://doi.org/10.22068/IJEEE.12.1.9 Pena, A. G., Macabiau, C., Julien, O., Mabilleau, M., & Durel, P. (2020). Impact of DME/TACAN on GNSS L5/E5a receiver. In: Proceedings of the 2020 International Technical Meeting ION ITM,. San Diego, California, 207–221. Satirapod, C., & Rizos, C. (2005). Multipath mitigation by wavelet analysis for GPS base station applications. Survey Review, 38(295), 2–10. https://doi.org/10.1179/003962605791521699 Satish, R., & Kumar, P. R. (2020). Efficient method for segmentation of noisy and non-circular iris images using improved particle swarm optimisation-based MRFCM. IET Biometrics, 9(2), 78–90. https://doi.org/10.1049/iet-bmt.2019.0026 Sharifi-tehrani, O., Farzan Sabahi, M., & Raees Danaee, M. (2020). Low-complexity framework for GNSS jamming and spoofing detection on moving platforms. IET Radar, Sonar and Navigation, 14(12), 2027–2038. https://doi.org/10.1049/iet-rsn.2020.0285 Sharma, I., Kuldeep, B., Kumar, A., & Singh, V. K. (2016). Performance of swarm based optimization techniques for designing digital FIR filter: A comparative study. Engineering Science and Technology, an International Journal, 19(3), 1564–1572. https://doi.org/10.1016/j.jestch.2016.05.013 Shen, H., & Papandreou-suppappola, A. (2005). Wideband time-varying interference suppression using Matched Signal Transforms. IEEE Transactions on Signal Processing, 53(7), 2607–2612. https://doi.org/10.1109/TSP.2005.849218 Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, AK, USA, 69–73. https://doi.org/10.1109/ICEC.1998.699146 Shi, Y., & Eberhart, R. C. (1999). Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406). Washington, DC, USA, 1945-1950. https://doi.org/10.1109/CEC.1999.785511 Silva Lorraine, K. J., & Ramarakula, M. (2021a). A comprehensive survey on GNSS interferences and the application of neural networks for anti- jamming. IETE Journal of Research. https://doi.org/10.1080/03772063.2021.1953407 Silva Lorraine, K. J., & Ramarakula, M. (2021b). An efficient interference mitigation approach for NavIC receivers using improved variational mode decomposition and wavelet packet decomposition. Transactions on Emerging Telecommunications Technologies, 32(4), 1–24. https://doi.org/10.1002/ett.4242 Silva Lorraine, K. J., & Ramarakula, M. (2021c). Hybrid anti-jamming algorithm for Indian Regional Navigation Satellite System receivers using variational mode decomposition and wavelet packet transform. International Journal of Communication Systems, 34(7), 1–16. https://doi.org/10.1002/dac.4734 Song, W. E. I., & Hua, Z. (2020). Multi-exemplar particle swarm optimization. IEEE Access, 8, 176363–176374. https://doi.org/10.1109/ACCESS.2020.3026620 Sumithra, A. M. G., & Thanushkodi, B. K. (2009). Performance evaluation of different thresholding methods in time adaptive wavelet based speech enhancement. IACSIT International Journal of Engineering and Technology, 1(5), 439–447. Varshney, N., & Jain, R. . (2013). An adaptive notch filter for narrow band interference removal. In: 2013 National Conference on Communications (NCC). New Delhi, India, 1–5. https://doi.org/10.1109/NCC.2013.6487917 Wang, P., Wang, Y., Cetin, E., Dempster, A. G., & Wu, S. (2019). Time-Frequency jammer mitigation based on Kalman Filter for GNSS receivers. IEEE Transactions on Aerospace and Electronic Systems, 55(3), 1561–1567. https://doi.org/10.1109/TAES.2018.2869507 Yi, T.-H., Li, H.-N., & Zhao, X.-Y. (2012). Noise smoothing for structural vibration test signals using an improved wavelet thresholding technique. Sensors, 12(8), 11205–11220. https://doi.org/10.3390/s120811205 Zhang, J., Cui, X., Xu, H., & Lu, M. (2019). A two-stage interference suppression scheme based on antenna array for GNSS jamming and spoofing. Sensors (basel, Switzerland), 19(18), 3870. https://doi.org/10.3390/s19183870 Zhang, J., Sheng, J., Lu, J., & Shen, L. (2021). UCPSO-a uniform initialized particle swarm optimization algorithm with cosine inertia weight. Computational Intelligence and Neuroscience, 2021, 1–18. https://doi.org/10.1155/2021/8819333 Zhang, X., Li, J., Xing, J., Wang, P., Yang, Q., & He, C. (2017). A Particle Swarm Optimization technique-based parametric wavelet thresholding function for signal denoising. Circuits, Systems, and Signal Processing, 36(1), 247–269. https://doi.org/10.1007/s00034-016-0303-x Zhang, X., Li, J., Xing, J., Wang, P., Yang, Q., Wang, R., & He, C. (2014). Optimal sensor placement for latticed shell structure based on an improved particle swarm optimization algorithm. Mathematical Problems in Engineering, 2014, 1–12. https://doi.org/10.1155/2014/743904 Zhang, Y., & Wang, A. (2020). Research on the fault diagnosis method for rolling bearings based on improved VMD and automatic IMF acquisition. Shock and Vibration, 2020, 1–19. https://doi.org/10.1155/2020/6216903