An efficient adaptive accelerated inexact proximal point method for solving linearly constrained nonconvex composite problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Amir, B.: First-Order Methods in Optimization, vol. 25. SIAM, Philadelphia (2017)
Aybat, N.S., Iyengar, G.: A first-order smoothed penalty method for compressed sensing. SIAM J. Optim. 21(1), 287–313 (2011)
Aybat, N.S., Iyengar, G.: A first-order augmented Lagrangian method for compressed sensing. SIAM J. Optim. 22(2), 429–459 (2012)
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)
Carmon, Y., Duchi, J.C., Hinder, O., Sidford, A.: Accelerated methods for nonconvex optimization. SIAM J. Optim. 28(2), 1751–1772 (2018)
Cartis, C., Gould, N., Toint, P.: On the complexity of steepest descent, Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization problems. SIAM J. Optim. 20(6), 2833–2852 (2010)
Chen, Y., Lan, G., Ouyang, Y.: Optimal primal-dual methods for a class of saddle point problems. SIAM J. Optim. 24(4), 1779–1814 (2014)
Drusvyatskiy, D., Paquette, C.: Efficiency of minimizing compositions of convex functions and smooth maps. Math. Program. 178, 1–56 (2018)
Ghadimi, S., Lan, G.: Accelerated gradient methods for nonconvex nonlinear and stochastic programming. Math. Program. 156, 59–99 (2016)
Ghadimi, S., Lan, G., Zhang, H.: Generalized uniformly optimal methods for nonlinear programming. J. Sci. Comput. 79(3), 1854–1881 (2019)
Gu, Q., Wang, Z., Liu, H.: Sparse pca with oracle property. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 1529–1537. Curran Associates Inc, Red Hook (2014)
He, Y., Monteiro, R.D.C.: Accelerating block-decomposition first-order methods for solving composite saddle-point and two-player Nash equilibrium problems. SIAM J. Optim. 25(4), 2182–2211 (2015)
He, Y., Monteiro, R.D.C.: An accelerated HPE-type algorithm for a class of composite convex-concave saddle-point problems. SIAM J. Optim. 26(1), 29–56 (2016)
Kolossoski, O., Monteiro, R.D.C.: An accelerated non-euclidean hybrid proximal extragradient-type algorithm for convex-concave saddle-point problems. Optim. Methods Softw. 32(6), 1244–1272 (2017)
Kong, W., Melo, J.G., Monteiro, R.D.C.: Complexity of a quadratic penalty accelerated inexact proximal point method for solving linearly constrained nonconvex composite programs. SIAM J. Optim. 29(4), 2566–2593 (2019)
Lan, G., Monteiro, R.D.C.: Iteration-complexity of first-order penalty methods for convex programming. Manuscript, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 (2008)
Lan, G., Monteiro, R.D.C.: Iteration-complexity of first-order penalty methods for convex programming. Math. Program. 138(1), 115–139 (2013)
Lan, G., Monteiro, R.D.C.: Iteration-complexity of first-order augmented Lagrangian methods for convex programming. Math. Program. 155(1), 511–547 (2016)
Li, H., Lin, Z.: Accelerated proximal gradient methods for nonconvex programming. Adv. Neural Inf. Process. Syst. 28, 379–387 (2015)
Liang, J., Monteiro, R.D.C., Sim, C.K.: A fista-type accelerated gradient algorithm for solving smooth nonconvex composite optimization problems. arXiv preprint arXiv:1905.07010 (2019)
Liu, Y.F., Liu, X., Ma, S.: On the nonergodic convergence rate of an inexact augmented lagrangian framework for composite convex programming. Math. Oper. Res. 44(2), 632–650 (2019)
Lu, Z., Zhou, Z.: Iteration-complexity of first-order augmented Lagrangian methods for convex conic programming. Available on arXiv:1803.09941 (2018)
Monteiro, R.D.C., Ortiz, C., Svaiter, B.F.: An adaptive accelerated first-order method for convex optimization. Comput. Optim. Appl. 64, 31–73 (2016)
Monteiro, R.D.C., Svaiter, B.F.: Iteration-complexity of a Newton proximal extragradient method for monotone variational inequalities and inclusion problems. SIAM J. Optim. 22(3), 914–935 (2012)
Monteiro, R.D.C., Svaiter, B.F.: An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods. SIAM J. Optim. 23(2), 1092–1125 (2013)
Necoara, I., Patrascu, A., Glineur, F.: Complexity of first-order inexact Lagrangian and penalty methods for conic convex programming. Optim. Methods Softw. 34, 1–31 (2017)
Nesterov, Y.E.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publ, Boston (2004)
Nesterov, Y.E., Polyak, B.T.: Cubic regularization of newton method and its global performance. Math. Program. 108(1), 177–205 (2006)
Paquette, C., Lin, H., Drusvyatskiy, D., Mairal, J., Harchaoui, Z.: Catalyst for gradient-based nonconvex optimization. In: AISTATS 2018-21st International Conference on Artificial Intelligence and Statistics, pp 1–10 (2018)
Patrascu, A., Necoara, I., Tran-Dinh, Q.: Adaptive inexact fast augmented Lagrangian methods for constrained convex optimization. Optim. Lett. 11(3), 609–626 (2017)
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)
Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Var. Anal. 7(4), 323–345 (1999)
Tran-Dinh, Q.: Proximal alternating penalty algorithms for nonsmooth constrained convex optimization. Comput. Optim. Appl. 72(1), 1–43 (2019)
Xu, Y.: Iteration complexity of inexact augmented Lagrangian methods for constrained convex programming. Available on arXiv:1711.05812 (2017)
Yao, Q., Kwok, J.T.: Efficient learning with a family of nonconvex regularizers by redistributing nonconvexity. J. Mach. Learn. Res. 18, 179–1 (2017)