An efficient Split-Merge re-start for the K-means algorithm

Marco Capó1, Aritz Pérez1, Jose A. Antonio Lozano1,2
1Basque Center of Applied Mathematics, Bilbao, Spain
2Department of Computer Science and Artificial Intelligence, Intelligent Systems Group, University of the Basque Country UPV/EHU, San Sebastián, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Jain, 1988, Algorithms for Clustering Data

10.1109/TPAMI.2002.1017616

10.1007/3-540-28349-8_2

10.1109/TSMCB.2008.2006641

10.1016/j.patrec.2009.09.011

10.1109/3477.764879

10.1109/TSMCB.2008.2004559

10.1007/s10115-007-0114-2

10.1007/s10994-009-5103-0

10.1007/978-3-642-00202-1_24

Kaufman, 1987, Clustering by Means of Medoids

10.1109/TIT.1982.1056489

Bottou, Convergence properties of the K-means algorithms, Proc. Advances Neural Inf. Process. Syst., 585

Elkan, Using the triangle inequality to accelerate k-means, Proc. 20th Int. Conf. Mach. Learn., 147

Ding, Yinyang K-means: A drop-in replacement of the classic k-means with consistent speedup, Proc. Int. Conf. Mach. Learn., 579

10.1145/1772690.1772862

10.1145/3219819.3219973

Balcan, Distributed $ k$k-means and $ k$k-median clustering on general topologies, Proc. Advances Neural Inf. Process. Syst., 1995

10.1016/j.knosys.2016.06.031

10.1007/s10618-020-00678-9

10.1145/1247069.1247072

10.1145/1007352.1007400

10.1109/FOCS.2004.7

10.1016/s0167-8655(99)00069-0

10.1007/s00454-011-9340-1

10.1016/j.eswa.2012.07.021

10.1016/j.patcog.2019.04.014

10.1016/j.patrec.2007.01.001

10.1007/s00357-007-0003-0

Forgy, 1965, Cluster analysis of multivariate data: Efficiency versus interpretability of classifications, Biometrics, 21, 768

Arthur, K-means++: The advantages of careful seeding, Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms, 1027

10.14778/2180912.2180915

10.1016/0304-3975(85)90224-5

10.2307/2346830

Nielsen, 2014, Further heuristics for $ k$k-means: The merge-and-split heuristic and the $(k, l)$(k,l)-means

Telgarsky, Hartigan’s method: K-means clustering without voronoi, Proc. 13th Int. Conf. Artif. Intell. Statist., 820

Slonim, Hartigan’s K-means versus lloyd’s K-means-is it time for a change?, Proc. 23rd Int. Joint Conf. Artif. Intell., 1677

Pelleg, X-means: Extending K-means with efficient estimation of the number of clusters, Proc. 17th Int. Conf. Mach. Learn., 727

Ball, 1965, Isodata, a novel method of data analysis and pattern classification

10.1109/29.35395

10.1117/1.601810

10.1117/1.1412423

10.1109/ICDM.2002.1183895

Bachem, Fast and provably good seedings for k-means, Proc. Advances Neural Inf. Process. Syst., 55