An effective nucleating agent for isotactic polypropylene (iPP): Zinc bis- (nadic anhydride) double-decker silsesquioxanes

Polymer - Tập 220 - Trang 123574 - 2021
Xian Zhang1, Shicheng Zhao1, Shiao-Wei Kuo2, Wei-Cheng Chen2, Mohamed Gamal Mohamed2,3, Zhong Xin1
1Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
2Department of Materials and Optoelectronic Science National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
3Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt

Tài liệu tham khảo

Creton, 2017, Molecular stitches for enhanced recycling of packaging, Science, 355, 797, 10.1126/science.aam5803 De Rosa, 2006, Structural-mechanical phase diagram of isotactic polypropylene, J. Am. Chem. Soc., 128, 11024, 10.1021/ja063464r Busico, 2001, Microstructure of polypropylene, Prog. Polym. Sci., 26, 443, 10.1016/S0079-6700(00)00046-0 Yang, 2017, Nucleation effects of zinc adipate as β-Nucleating agent in ethylene-propylene block copolymerized polypropylene, J. Polym. Res., 24, 143, 10.1007/s10965-017-1300-x Peng, 2018, Unique crystallization behavior of isotactic polypropylene in the presence of l-isoleucine and its inhibition and promotion mechanism of nucleation, J. Appl. Polym. Sci., 135, 45956, 10.1002/app.45956 De Rosa, 2017, The “nodular” α form of isotactic polypropylene: stiff and strong polypropylene with high deformability, Macromolecules, 50, 5434, 10.1021/acs.macromol.7b00787 Niu, 2018, Influence of beta-nucleating agent dispersion on the crystallization behavior of isotactic polypropylene, Polymer, 150, 371, 10.1016/j.polymer.2018.07.030 Jiang, 2018, Effect of benzoic acid surface modified alumina nanoparticles on the mechanical properties and crystallization behavior of isotactic polypropylene nanocomposites, RSC Adv., 8, 20790, 10.1039/C8RA01069B Guo, 2014, Ultrafine dispersion of a phosphate nucleating agent in a polypropylene matrix via the microemulsion method, RSC Adv., 4, 11931, 10.1039/c3ra46244g Zhang, 2017, Isothermal crystallization of isotactic polypropylene nucleated with a novel aromatic heterocyclic phosphate nucleating agent, J. Macromol. Sci., Part B, 56, 811, 10.1080/00222348.2017.1385360 Teng, 2017, Nucleating and plasticization effects of low-loading octavinyl-polyhedral oligomeric silsesquioxanes in novel biodegradable poly(ethylene succinate-co-diethylene glycol succinate)-based nanocomposite, Ind. Eng. Chem. Res., 56, 14807, 10.1021/acs.iecr.7b04004 Mohamed, 2019, Functional polyimide/polyhedral oligomeric silsesquioxane nanocomposites, Polymers, 11, 26, 10.3390/polym11010026 Zhang, 2020, The chain dis-entanglement effect of polyhedral oligomeric silsesquioxanes (POSS) on ultra-high molecular weight polyethylene (UHMWPE), Polymer, 202, 122631, 10.1016/j.polymer.2020.122631 Mohamed, 2016, Polybenzoxazine/Polyhedral oligomeric silsesquioxane (POSS) nanocomposites, Polymers, 8, 225, 10.3390/polym8060225 Sellinger, 1996, Silsesquioxanes as synthetic platforms. Thermally curable and photocurable inorganic/organic hybrids, Macromolecules, 29, 2327, 10.1021/ma951499y Romo Uribe, 2019, POSS driven chain disentanglements, decreased the melt viscosity and reduced O2 transmission in polyethylene, Polymer, 165, 61, 10.1016/j.polymer.2019.01.024 Zhang, 2017, Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: an overview of fire retardance, Prog. Polym. Sci., 67, 77, 10.1016/j.progpolymsci.2016.09.011 Kuo, 2011, POSS related polymer nanocomposites, Prog. Polym. Sci., 36, 1649, 10.1016/j.progpolymsci.2011.05.002 Sirin, 2013, POSS reinforced PET based composite fibers: “Effect of POSS type and loading level”, Compos. B Eng., 53, 395, 10.1016/j.compositesb.2013.05.033 Teng, 2017, Enhanced crystallization and mechanical properties of biodegradable poly(ethylene succinate) by octaisobutyl-polyhedral oligomeric silsesquioxanes in their nanocomposites, Thermochim. Acta, 649, 22, 10.1016/j.tca.2017.01.004 Barczewski, 2016, Novel polypropyleneβ-nucleating agent with polyhedral oligomeric silsesquioxane core: synthesis and application, Polym. Int., 65, 1080, 10.1002/pi.5158 Heeley, 2014, Morphology and crystallization kinetics of polyethylene/long alkyl-chain substituted Polyhedral Oligomeric Silsesquioxanes (POSS) nanocomposite blends: a SAXS/WAXS study, Eur. Polym. J., 51, 45, 10.1016/j.eurpolymj.2013.11.020 Carniato, 2008, Polypropylene containing Ti- and Al-polyhedral oligomeric silsesquioxanes: crystallization process and thermal properties, Nanotechnology, 19, 475701, 10.1088/0957-4484/19/47/475701 Perrin, 2013, The influence of alkyl substituents of POSS in polyethylene nanocomposites, Polymer, 54, 2347, 10.1016/j.polymer.2013.02.035 Qin, 2018, In situ formation of zinc phthalate as a highly dispersed β-nucleating agent for mechanically strengthened isotactic polypropylene, Chem. Eng. J., 358, 1243, 10.1016/j.cej.2018.10.108 Zhao, 2016, A highly active and selective β-nucleating agent for isotactic polypropylene and crystallization behavior of β-nucleated isotactic polypropylene under rapid cooling, J. Appl. Polym. Sci., 133, 10.1002/app.43767 Lv, 2012, Design and properties of a novel nucleating agent for isotactic polypropylene, Mater. Des., 37, 73, 10.1016/j.matdes.2011.12.011 Zhang, 2019, Preparation and nucleation effect of a novel compound nucleating agent carboxylated graphene/calcium pimelate for isotactic polypropylene, J. Therm. Anal. Calorim., 136, 2363, 10.1007/s10973-018-7886-3 Schawe, 2017, Nucleation efficiency of fillers in polymer crystallization studied by fast scanning calorimetry: carbon nanotubes in polypropylene, Polymer, 116, 160, 10.1016/j.polymer.2017.03.072 Schawe, 2018, Nucleation activity at high supercooling: sorbitol-type nucleating agents in polypropylene, Polymer, 153, 587, 10.1016/j.polymer.2018.08.054 Chen, 2018, Ortho-imide and allyl groups effect on highly thermally stable polybenzoxazine/double-decker-shaped polyhedral silsesquioxane hybrids, Macromolecules, 51, 9602, 10.1021/acs.macromol.8b02207 Schawe, 2019, Identification of three groups of polymers regarding their non-isothermal crystallization kinetics, Polymer, 167, 167, 10.1016/j.polymer.2019.02.011 Rybnikář, 1969, Efficiency of nucleating additives in polypropylene, J. Appl. Polym. Sci., 13, 827, 10.1002/app.1969.070130502 Beck, 1965, DTA study of heterogeneous nucleation of crystallization in polypropylene, J. Appl. Polym. Sci., 9, 2131, 10.1002/app.1965.070090610 Zhang, 2008, Crystallization and melting behaviors of isotactic polypropylene nucleated with compound nucleating agents, J. Polym. Sci., Part B: Polym. Phys., 46, 911, 10.1002/polb.21425 Schick, 2016 Schawe, 2019, Non‐isothermal crystallization of polypropylene with sorbitol‐type nucleating agents at cooling rates used in processing, Polym. Int., 68, 240, 10.1002/pi.5581 Androsch, 2010, Mesophases in polyethylene, polypropylene, and poly(1-butene), Polymer, 51, 4639, 10.1016/j.polymer.2010.07.033 Yang, 2017, Chain folding in main-chain liquid crystalline polyester with strong π–π interaction: an efficient β-nucleating agent for isotactic polypropylene, Macromolecules, 50, 1610, 10.1021/acs.macromol.6b02521 Chen, 2007, Isothermal crystallization behavior of isotactic polypropylene blended with small loading of polyhedral oligomeric silsesquioxane, Polymer, 48, 1756, 10.1016/j.polymer.2007.01.010 Chen, 2006, Crystallization behavior and morphological development of isotactic polypropylene blended with nanostructured polyhedral oligomeric silsesquioxane molecules, J. Polym. Sci., Part B: Polym. Phys., 44, 2122, 10.1002/polb.20878 Zhang, 2020, Crystallization behaviors of poly(ethylene terephthalate) (PET) with monosilane isobutyl-polyhedral oligomeric silsesquioxanes (POSS), J. Mater. Sci., 55, 14642, 10.1007/s10853-020-05003-9 De Santis, 2006, Scanning nanocalorimetry at high cooling rate of isotactic polypropylene, Macromolecules, 39, 2562, 10.1021/ma052525n De Santis, 2007, Isothermal nanocalorimetry of isotactic polypropylene, Macromolecules, 40, 9026, 10.1021/ma071491b Mahmood, 2020, Influence of structure gradients in injection moldings of isotactic polypropylene on their mechanical properties, Polymer, 200, 122556, 10.1016/j.polymer.2020.122556 Gahleitner, 2017, Polymer structure effects on crystallization and properties in polypropylene film casting, AIP Conference Proceedings, 1914, 130001, 10.1063/1.5016762 Boyer, 2010, Crystallization of polymers at constant and high cooling rates: a new hot-stage microscopy set-up, Polym. Test., 29, 445, 10.1016/j.polymertesting.2010.02.003 Nishida, 2012, In situ observations of the mesophase formation of isotactic polypropylene—a fast time-resolved X-ray diffraction study, Polym. J., 44, 95, 10.1038/pj.2011.118 Mileva, 2012, Structure formation of random isotactic copolymers of propylene and 1-hexene or 1-octene at rapid cooling, Eur. Polym. J., 48, 1082, 10.1016/j.eurpolymj.2012.03.009 Schawe, 2015, Analysis of non-isothermal crystallization during cooling and reorganization during heating of isotactic polypropylene by fast scanning DSC, Thermochim. Acta, 603, 85, 10.1016/j.tca.2014.11.006 Paolucci, 2018, Quantification of isothermal crystallization of polyamide 12: modelling of crystallization kinetics and phase composition, Polymer, 155, 187, 10.1016/j.polymer.2018.09.037 Wang, 2018, Effect of surface modification on the dispersion, rheological behavior, crystallization kinetics, and foaming ability of polypropylene/cellulose nanofiber nanocomposites, Compos. Sci. Technol., 168, 412, 10.1016/j.compscitech.2018.10.023