An effective method to compute the box-counting dimension based on the mathematical definition and intervals
Tóm tắt
Từ khóa
Tài liệu tham khảo
Mandelbrot, 1967, How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636, 10.1126/science.156.3775.636
Mandelbrot, 1985, Self-affine fractals and fractal dimension, Phys. Scripta, 32, 257, 10.1088/0031-8949/32/4/001
Mandelbrot, 1983
Prähofer, 2000, Statistical self-similarity of one-dimensional growth processes, Phys. Stat. Mech. Appl., 279, 342, 10.1016/S0378-4371(99)00517-8
Sarkar, 1994, An efficient differential box-counting approach to compute fractal dimension of image, IEEE Trans. Syst. Man Cybern., 24, 115, 10.1109/21.259692
Falconer, 1988, The Hausdorff dimension of self-affine fractals//mathematical proceedings of the cambridge philosophical society, Camb. Univ. Press, 103, 339
Falconer, 2004
Tzeng, 2011, A parallel differential box-counting algorithm applied to hyperspectral image classification, Geosci. Rem. Sens. Lett. IEEE, 9, 272, 10.1109/LGRS.2011.2166243
Harrar, 2007, The box counting method for evaluate the fractal Dimension in radiographic images, 1, 4
Bouda, 2016, Box-counting dimension revisited: presenting an efficient method of minimizing quantization error and an assessment of the self-similarity of structural root systems, Front. Plant Sci., 7, 149, 10.3389/fpls.2016.00149
Barnsley, 1985, Iterated function systems and the global construction of fractals, Proceedings of the Royal Society of Lond. A. Math. Phys. Sci., 399, 243