An effective magnetic amorphous titanium phosphate material to remove U(VI) from water: synthesis, characterization, and adsorption properties
Tóm tắt
The material of magnetic amorphous titanium phosphate (MATP-x-T, where x was the dosage of Fe3O4, T was synthesis temperature) was successfully synthesized and confirmed by various experimental characterization methods (FT-IR, XRD, SEM, and Zeta potential), and its adsorption property for U(VI) removal was evaluated. The adsorption of U(VI) on MATP-x-T were explored through batch experiments. The optimal value of x and T was 0.5 g and 70 °C, respectively. The saturated adsorption capacity of MATP-0.5-70 was 401.5 mg g−1 for U(VI) at 298.15 K. The U(VI) adsorption was well explained by the pseudo-second order kinetic model. The possible mechanism of the adsorption of U(VI) was explored based on XPS and FTIR analysis. MATP-0.5-70 could be employed as an auspicious candidate for U(VI) removal radioactive wastewater.
Tài liệu tham khảo
Xin Y, Wang J, Li Y, Asiri AM, Marwani HM, Hu S, Wang G, Xu Z (2018) Influence of humic acid on the immobilization of U(VI) by montmorillonite in simulated environmental conditions. Sep Sci Technol 53(5):696–706. https://doi.org/10.1080/01496395.2017.1405037
Bleise A, Danesi PR, Burkart W (2003) Properties, use and health effects of depleted uranium (DU): a general overview. J Environ Radioact 64(2):93–112. https://doi.org/10.1016/S0265-931X(02)00041-3
Craft ES, Abu-Qare AW, Flaherty MM, Garofolo MC, Rincavage HL, Abou-Donia MB (2004) Depleted and natural uranium: chemistry and toxicological effects. J Toxicol Environ Health B 7(4):297–317. https://doi.org/10.1080/10937400490452714
Zamora ML, Tracy BL, Zielinski JM, Meyerhof DP, Moss MA (1998) Chronic ingestion of uranium in drinking water: a study of kidney bioeffects in humans. Toxicol Sci 43(1):68–77. https://doi.org/10.1093/toxsci/43.1.68
Dai Z, Sun Y, Zhang H, Ding D, Li L (2020) Photocatalytic reduction of U(VI) in wastewater by mGO/g-C3N4 nanocomposite under visible LED light irradiation. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126671
Chen F, Tan N, Yan XM, Yang SK, She ZG, Lin YC (2014) Uranium(VI) removal from aqueous solution by poly(amic acid)-modified marine fungus. Sep Sci Technol 49(8):1251–1258. https://doi.org/10.1080/01496395.2013.877033
Beltrami D, Cote G, Mokhtari H, Courtaud B, Moyer BA, Chagnes A (2014) Recovery of uranium from wet phosphoric acid by solvent extraction processes. Chem Rev 114(24):12002–12023. https://doi.org/10.1021/cr5001546
Dutta DP, Nath S (2018) Low cost synthesis of SiO2/C nanocomposite from corn cobs and its adsorption of uranium(VI), chromium(VI) and cationic dyes from wastewater. J Mol Liq 269:140–151. https://doi.org/10.1016/j.molliq.2018.08.028
Dąbrowski A (2001) Adsorption-from theory to practice. Adv Colloid Interface 93(1):135–224. https://doi.org/10.1016/S0001-8686(00)00082-8
Sadeek SA, Abd El-Magied MO, El-Sayed MA, Amine MM (2014) Selective solid-phase extraction of U(VI) by amine functionalized glycidyl methacrylate. J Environ Chem Eng 2(1):293–303. https://doi.org/10.1016/j.jece.2013.12.015
Abd El-Magied MO, Tolba AA, El-Gendy HS, Zaki SA, Atia AA (2017) Studies on the recovery of Th(IV) ions from nitric acid solutions using amino-magnetic glycidyl methacrylate resins and application to granite leach liquors. Hydrometallurgy 169:89–98. https://doi.org/10.1016/j.hydromet.2016.12.011
Katsoyiannis IA, Zouboulis AI (2013) Removal of uranium from contaminated drinking water: a mini review of available treatment methods. Desalin Water Treat 51(13–15):2915–2925. https://doi.org/10.1080/19443994.2012.748300
Jun BM, Lee HK, Park S, Kim TJ (2021) Purification of uranium-contaminated radioactive water by adsorption: a review on adsorbent materials. Sep Purif Technol 278:119675. https://doi.org/10.1016/j.seppur.2021.119675
Guo H, Mei P, Xiao J, Huang X, Ishag A, Sun Y (2021) Carbon materials for extraction of uranium from seawater. Chemosphere 278:130411. https://doi.org/10.1016/j.chemosphere.2021.130411
Abd El-Magied MO (2016) Sorption of uranium ions from their aqueous solution by resins containing nanomagnetite particles. J Environ Chem Eng. https://doi.org/10.1155/2016/7214348
Zhao M, Cui Z, Pan D, Fan F, Tang J, Hu Y, Xu Y, Zhang P, Li P, Kong X-Y, Wu W (2021) An efficient uranium adsorption magnetic platform based on amidoxime-functionalized flower-like Fe3O4@TiO2 core–shell microspheres. ACS Appl Mater Interfaces 13(15):17931–17939. https://doi.org/10.1021/acsami.1c00556
Tahmasebi E, Yamini Y, Mehdinia A, Rouhi F (2012) Polyaniline-coated Fe3O4 nanoparticles: an anion exchange magnetic sorbent for solid-phase extraction. J Sep Sci 35(17):2256–2265. https://doi.org/10.1002/jssc.201200345
Yalcin MS, Kilinc E, Ozdemir S, Yuksel U, Soylak M (2020) Phallus impudicus loaded with gamma-Fe2O3 as solid phase bioextractor for the preconcentrations of Zn(II) and Cr(III) from water and food samples. Process Biochem 92:149–155. https://doi.org/10.1016/j.procbio.2020.03.012
Shahbazi D, Mousavi SA, Noori E (2020) Adsorption of methylene blue from aqueous solutions using magnetic zero-valent iron-activated grape wastes: optimization and modeling. Desalin Water Treat 182:375–384. https://doi.org/10.5004/dwt.2020.25184
Zhang Y, Fein JB, Li Y, Yu Q, Zu B, Zheng C (2021) U(VI) adsorption to Fe3O4 nanoparticles coated with lignite humic acid: experimental measurements and surface complexation modeling. Colloid Surface. https://doi.org/10.1016/j.colsurfa.2021.126150
Maity D, Agrawal DC (2007) Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater 308(1):46–55. https://doi.org/10.1016/j.jmmm.2006.05.001
Ortíz-Oliveros HB, Flores-Espinosa RM, Ordoñez-Regil E, Fernández-Valverde SM (2014) Synthesis of α-Ti(HPO4)2·H2O and sorption of Eu(III). Chem Eng J 236:398–405. https://doi.org/10.1016/j.cej.2013.09.103
García-Glez J, Amghouz Z, Khainakov SA, Espina A, Alfonso BF, Trobajo C (2014) Ammonium-exchanged phase of γ-titanium phosphate. J Therm Anal Calorim 118(2):783–791. https://doi.org/10.1007/s10973-014-3923-z
Zakutevskyy OI, Psareva TS, Strelko VV (2012) Sorption of U(VI) ions on sol–gel-synthesized amorphous spherically granulated titanium phosphates. Russ J Appl Chem 85(9):1366–1370. https://doi.org/10.1134/S107042721209011X
Maslova M, Ivanenko VI, Gerasimova LG, Vilkova NL (2019) Study of the sorption of cesium cations by a sorbent based on titanium phosphate. Prot Met Phys Chem 55(5):833–840. https://doi.org/10.1134/S2070205119050174
Jia K, Pan B, Zhang Q, Zhang W, Jiang P, Hong C, Pan B, Zhang Q (2008) Adsorption of Pb2+, Zn2+, and Cd2+ from waters by amorphous titanium phosphate. J Colloid Interface Sci 318(2):160–166. https://doi.org/10.1016/j.jcis.2007.10.043
Maslova M, Ivanenko V, Yanicheva N, Gerasimova L (2020) The effect of heavy metal ions hydration on their sorption by a mesoporous titanium phosphate ion-exchanger. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2020.101233
Zhang W, Koivula R, Wiikinkoski E, Xu J, Hietala S, Lehto J, Harjula R (2017) Efficient and selective recovery of trace scandium by inorganic titanium phosphate ion-exchangers from leachates of waste bauxite residue. ACS Sustain Chem Eng 5(4):3103–3114. https://doi.org/10.1021/acssuschemeng.6b02870
Abd El-Magied MO, Manaa E-SA, Youssef MAM, Kouraim MN, Dhmees AS, Eldesouky EM (2021) Uranium removal from aqueous medium using Co0.5Mn0.5Fe2O4 nanoparticles. J Radioanal Nucl Chem 327(2):745–753. https://doi.org/10.1007/s10967-020-07571-1
Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed Engl 44(18):2782–2785. https://doi.org/10.1002/anie.200462551
Sabur AM, Rdaiaan MA (2021) Design, synthesis and biological screening of new benzimidazole derivatives. J Phys Conf Ser 1879(2):022056. https://doi.org/10.1088/1742-6596/1879/2/022056
Pironon J, Pelletier M, De Donato P, Mosser-Ruck R (2003) Characterization of smectite and illite by FTIR spectroscopy of interlayer NH4+ cations. Clay Miner 38(2):201–211. https://doi.org/10.1180/0009855033820089
Janiszewska E, Kot M, Zieliński M (2018) Modification of silica with NH4+ agents to prepare an acidic support for iridium hydrogenation catalyst. Micropor Mesopor Mat 255:94–102. https://doi.org/10.1016/j.micromeso.2017.07.031
Yuan J, Yang J, Ma H, Liu C (2016) Crystal structural transformation and kinetics of NH4+/Na+ ion-exchange in analcime. Microporous Mesoporous Mater 222:202–208. https://doi.org/10.1016/j.micromeso.2015.10.020
Wang Q, Zhong L, Sun J, Shen J (2005) A facile layer-by-layer adsorption and reaction method to the preparation of titanium phosphate ultrathin films. Chem Mater 17(13):3563–3569. https://doi.org/10.1021/cm050646w
Sahu BB, Parida K (2002) Cation exchange and sorption properties of crystalline alpha-titanium(IV) phosphate. J Colloid Interface Sci 248(2):221–230. https://doi.org/10.1006/jcis.2001.7818
Roohani M, Shabanian M, Kord B, Hajibeygi M, Khonakdar HA (2016) New functional Fe3O4 nanoparticles utilizing as adjuvant in the green PVA/cellulose whiskers nanocomposite. Thermochim Acta 635:17–25. https://doi.org/10.1016/j.tca.2016.04.020
Zeng DJ, Dai Y, Zhang ZB, Wang YQ, Cao XH, Liu YH (2020) Magnetic solid-phase extraction of U(VI) in aqueous solution by Fe3O4@hydroxyapatite. J Radioanal Nucl Chem 324(3):1329–1337. https://doi.org/10.1007/s10967-020-07148-y
Liu P, Huang Y, Yan J, Zhao Y (2016) Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J Mater Chem C 4(26):6362–6370. https://doi.org/10.1039/C6TC01718E
Fannin PC, Marin CN, Malaescu I, Stefu N (2007) An investigation of the microscopic and macroscopic properties of magnetic fluids. Physica B 388(1):87–92. https://doi.org/10.1016/j.physb.2006.05.008
Zheng H, Zhou L, Liu Z, Le Z, Ouyang J, Huang G, Shehzad H (2019) Functionalization of mesoporous Fe3O4@SiO2 nanospheres for highly efficient U(VI) adsorption. Microporous Mesoporous Mater 279:316–322. https://doi.org/10.1016/j.micromeso.2018.12.038
Kuncham K, Nair S, Durani S, Bose R (2017) Efficient removal of uranium(VI) from aqueous medium using ceria nanocrystals: an adsorption behavioural study. J Radioanal Nucl Chem 313(1):101–112. https://doi.org/10.1007/s10967-017-5279-x
Yq W, Zy Z, Yk Z, Huang Jh, Zb Z, Cao Xh, Dai Y, Hua R, Liu Yh (2018) Adsorption of U(VI) on montmorillonite pillared with hydroxy-aluminum. J Radioanal Nucl Chem 317(1):69–80. https://doi.org/10.1007/s10967-018-5913-2
Ho Y-S (2006) Review of second-order models for adsorption systems. J Hazard Mater 136(3):681–689. https://doi.org/10.1016/j.jhazmat.2005.12.043
Shinde SK, Dubal DP, Ghodake GS, Fulari VJ (2015) Hierarchical 3D-flower-like CuO nanostructure on copper foil for supercapacitors. RSC Adv 5(6):4443–4447. https://doi.org/10.1039/C4RA11164H
Xu J, Chen M, Zhang C, Yi Z (2013) Adsorption of uranium(VI) from aqueous solution by diethylenetriamine-functionalized magnetic chitosan. J Radioanal Nucl Chem 298(2):1375–1383. https://doi.org/10.1007/s10967-013-2571-2
Chen R, Chai L, Li Q, Shi Y, Wang Y, Mohammad A (2013) Preparation and characterization of magnetic Fe3O4/CNT nanoparticles by RPO method to enhance the efficient removal of Cr(VI). Environ Sci Pollut Res 20(10):7175–7185. https://doi.org/10.1007/s11356-013-1671-4
Chen L, Wang H, Cao X, Feng Y, Zhang Z, Wang Y, Liu Y (2021) Effects of different phosphorus sources on the adsorption of U(VI) by Zr(IV) organophosphate hybrids. J Solid State Chem. https://doi.org/10.1016/j.jssc.2021.122434
Zhang J, Feng L, Jian Y, Luo G, Wang M, Hu B, Liu T, Li J, Yuan Y, Wang N (2022) Interlayer spacing adjusted zirconium phosphate with 2D ion channels for highly efficient removal of uranium contamination in radioactive effluent. Chem Eng J. https://doi.org/10.1016/j.cej.2021.132265
Bi C, Zheng B, Yuan Y, Ning H, Gou W, Guo J, Chen L, Hou W, Li Y (2021) Phosphate group functionalized magnetic metal-organic framework nanocomposite for highly efficient removal of U(VI) from aqueous solution. Sci Rep 11(1):24328. https://doi.org/10.1038/s41598-021-03246-3
Tian Y, Liu L, Ma F, Zhu X, Dong H, Zhang C, Zhao F (2021) Synthesis of phosphorylated hyper-cross-linked polymers and their efficient uranium adsorption in water. J Hazard Mater 419:126538. https://doi.org/10.1016/j.jhazmat.2021.126538
Wang Y, Zeng D, Dai Y, Fang C, Han X, Zhang Z, Cao X, Liu Y (2020) The adsorptive ability of 3D flower-like titanium phosphate for U(VI) in aqueous solution. Water Air Soil Pollut. https://doi.org/10.1007/s11270-020-04817-2
Wang Y-q, Wang H, Feng Y, Zhang Z-b, Cao X-h, Liu Y-h (2021) Effect of Zr(IV) to phosphorus ratio on U(VI) adsorption by diethylenetriamine-pentamethylene phosphate Zr(IV) hybrids. Radiochim Acta 109(10):759–771. https://doi.org/10.1515/ract-2021-1052
Zhuang S, Wang J (2019) Removal of U(VI) from aqueous solution using phosphate functionalized bacterial cellulose as efficient adsorbent. Radiochim Acta 107(6):459–467. https://doi.org/10.1515/ract-2018-3077
Zhang ZB, Yu XF, Cao XH, Hua R, Li M, Liu YH (2014) Adsorption of U(VI) from aqueous solution by sulfonated ordered mesoporous carbon. J Radioanal Nucl Chem 301(3):821–830. https://doi.org/10.1007/s10967-014-3237-4
Liu J-m, Yin X-h, Liu T (2019) Amidoxime-functionalized metal-organic frameworks UiO-66 for U(VI) adsorption from aqueous solution. J Taiwan Inst Chem Eng 95:416–423. https://doi.org/10.1016/j.jtice.2018.08.012
Li Y, Dai Y, Tao Q, Gao Z, Xu L (2022) Ultrahigh efficient and selective adsorption of U(VI) with amino acids-modified magnetic chitosan biosorbents: performance and mechanism. Int J Biol Macromol 214:54–66. https://doi.org/10.1016/j.ijbiomac.2022.06.061
Zhang H, Dai Z, Sui Y, Xue J, Ding D (2018) Adsorption of U(VI) from aqueous solution by magnetic core–dual shell Fe3O4@PDA@TiO2. J Radioanal Nucl Chem 317(1):613–624. https://doi.org/10.1007/s10967-018-5923-0
Li N, Gao P, Chen H, Li F, Wang Z (2022) Amidoxime modified Fe3O4@TiO2 particles for antibacterial and efficient uranium extraction from seawater. Chemosphere 287(Pt 2):132137. https://doi.org/10.1016/j.chemosphere.2021.132137
Zhao X, Li X, Zhang S, Long J, Huang Y, Wang R, Sha J (2017) A three-dimensional sponge of graphene nanoribbons crosslinked by Fe3O4 nanoparticles for Li+ storage. J Mater Chem A 5(45):23592–23599. https://doi.org/10.1039/c7ta07874a
Liu Y, Zhao Z, Yuan D, Wang Y, Dai Y, Zhu Y, Chew JW (2019) Introduction of amino groups into polyphosphazene framework supported on CNT and coated Fe3O4 nanoparticles for enhanced selective U(VI) adsorption. Appl Surf Sci 466:893–902. https://doi.org/10.1016/j.apsusc.2018.10.097
Vidya K, Dapurkar SE, Selvam P, Badamali SK, Gupta NM (2001) The entrapment of UO22+ in mesoporous MCM-41 and MCM-48 molecular sieves. Microporous Mesoporous Mater 50(2):173–179. https://doi.org/10.1016/S1387-1811(01)00445-0
Jiang W, Saxena A, Song B, Ward BB, Beveridge TJ, Myneni SCB (2004) Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy. Langmuir 20(26):11433–11442. https://doi.org/10.1021/la049043
Barkleit A, Foerstendorf H, Li B, Rossberg A, Moll H, Bernhard G (2011) Coordination of uranium(VI) with functional groups of bacterial lipopolysaccharide studied by EXAFS and FT-IR spectroscopy. Dalton Trans 40(38):9868–9876. https://doi.org/10.1039/C1DT10546A
Wang X, Yang X, Cai J, Miao T, Li L, Li G, Deng D, Jiang L, Wang C (2014) Novel flower-like titanium phosphate microstructures and their application in lead ion removal from drinking water. J Mater Chem A 2(19):6718–6722. https://doi.org/10.1039/c4ta00246f
Jiao Z, Meng Y, He C, Yin X, Wang X, Wei Y (2021) One-pot synthesis of silicon-based zirconium phosphate for the enhanced adsorption of Sr(II) from the contaminated wastewater. Microporous Mesoporous Mater 318:111016. https://doi.org/10.1016/j.micromeso.2021.111016
Kohzadi H, Soleiman-Beigi M (2021) XPS and structural studies of Fe3O4-PTMS-NAS@Cu as a novel magnetic natural asphalt base network and recoverable nanocatalyst for the synthesis of biaryl compounds. Sci Rep 11(1):24508. https://doi.org/10.1038/s41598-021-04111-z
Cai Y, Wu C, Liu Z, Zhang L, Chen L, Wang J, Wang X, Yang S, Wang S (2017) Fabrication of a phosphorylated graphene oxide–chitosan composite for highly effective and selective capture of U(VI). Environ Sci Nano 4(9):1876–1886. https://doi.org/10.1039/C7EN00412E
Qiang S, Wang J, Wang Y, Yuan L, Shi L, Ding Z, Wang W, Liang J, Li P, Fan Q (2022) Analysis of the uranium chemical state by XPS: is what you see real? Appl Surf Sci 576:151886. https://doi.org/10.1016/j.apsusc.2021.151886