An automatic pipeline for PET/MRI attenuation correction validation in the brain
Tóm tắt
Challenges in PET/MRI quantitative accuracy for neurological uses arise from PET attenuation correction accuracy. We proposed and evaluated an automatic pipeline to assess the quantitative accuracy of four MRI-derived PET AC methods using analytically simulated PET brain lesions and ROIs as ground truth for PET activity.
Our proposed pipeline, integrating a synthetic lesion insertion tool and the FreeSurfer neuroimaging framework, inserts simulated spherical and brain ROIs into PET projection space, reconstructing them via four PET MRAC techniques. Utilizing an 11-patient brain PET dataset, we compared the quantitative accuracy of four MRACs (DIXON, DIXONbone, UTE AC, and DL-DIXON) against the gold standard PET CTAC, evaluating MRAC to CTAC activity bias in spherical lesions and brain ROIs with and without background activity against original (lesion free) PET reconstructed images.
The proposed pipeline yielded accurate results for spherical lesions and brain ROIs, adhering to the MRAC to CTAC pattern of original brain PET images. Among the MRAC methods, DIXON AC exhibited the highest bias, followed by UTE, DIXONBone, and DL-DIXON showing the least. DIXON, DIXONbone, UTE, and DL-DIXON showed MRAC to CTAC biases of − 5.41%, − 1.85%, − 2.74%, and 0.08% respectively for ROIs inserted in background activity; − 7.02%, − 2.46%, − 3.56%, and − 0.05% for lesion ROIs without background; and − 6.82%, − 2.08%, − 2.29%, and 0.22% for the original brain PET images’ 16 FreeSurfer brain ROIs.
The proposed pipeline delivers accurate results for synthetic spherical lesions and brain ROIs, with and without background activity consideration, enabling the evaluation of new attenuation correction approaches without utilizing measured PET emission data. Additionally, it offers a consistent method to generate realistic lesion ROIs, potentially applicable in assessing further PET correction techniques.
Từ khóa
Tài liệu tham khảo
Huang SC, Hoffman EJ, Phelps ME, Kuh DE. Quantitation in positron emission computed tomography: 2. effects of inaccurate attenuation correction. J Comput Assist Tomogr. 1979;3(6):804–14. https://doi.org/10.1097/00004728-197903060-00018.
Catana C, Drzezga A, Heiss WD, Rosen BR. PET/MRI for neurologic applications. J Nucl Med. 2012;53(12):1916–25. https://doi.org/10.2967/jnumed.112.105346.
Fraum TJ, Fowler KJ, McConathy J. PET/MRI: emerging clinical applications in oncology. Acad Radiol. 2016;23(2):220–36. https://doi.org/10.1016/j.acra.2015.09.008.
Keereman V, Mollet P, Berker Y, Schulz V, Vandenberghe S. Challenges and current methods for attenuation correction in PET/MR. Magn Reson Mater Phys Biol Med. 2013;26(1):81–98. https://doi.org/10.1007/s10334-012-0334-7.
Martinez-Möller A, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50(4):520–6. https://doi.org/10.2967/jnumed.108.054726.
Ladefoged CN, et al. A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients. Neuroimage. 2017;147:346–59. https://doi.org/10.1016/j.neuroimage.2016.12.010.
Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology. 2018;286(2):676–84. https://doi.org/10.1148/radiol.2017170700.
Berker Y, Li Y. Attenuation correction in emission tomography using the emission data: a review. Med Phys. 2016;43(2):807–32. https://doi.org/10.1118/1.4938264.
Mansur A, Newbould R, Searle GE, Redstone C, Gunn RN, Hallett WA. PET-MR attenuation correction in dynamic brain PET using [11C]cimbi-36: a direct comparison with PET-CT. IEEE Trans Radiat Plasma Med Sci. 2018;2(5):483–9. https://doi.org/10.1109/TRPMS.2018.2852558.
Ladefoged CN, et al. AI-driven attenuation correction for brain PET/MRI: clinical evaluation of a dementia cohort and importance of the training group size. Neuroimage. 2020;222:117221. https://doi.org/10.1016/j.neuroimage.2020.117221.
Jan S, et al. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys Med Biol. 2011;56(4):881–901. https://doi.org/10.1088/0031-9155/56/4/001.
Papadimitroulas P, et al. Investigation of realistic PET simulations incorporating tumor patient’s specificity using anthropomorphic models: creation of an oncology database. Med Phys. 2013;10(1118/1):4826162.
Le Maitre A, et al. Incorporating patient-specific variability in the simulation of realistic whole-body 18F-FDG distributions for oncology applications. Proc IEEE. 2009;97(12):2026–38. https://doi.org/10.1109/JPROC.2009.2027925.
Islam J, Zhang Y. GAN-based synthetic brain PET image generation. Brain Inform. 2020;7(1):1–12. https://doi.org/10.1186/S40708-020-00104-2/FIGURES/9.
Berthon B, et al. PETSTEP: generation of synthetic PET lesions for fast evaluation of segmentation methods. Phys Med. 2015. https://doi.org/10.1016/j.ejmp.2015.07.139.
Pfaehler E, De Jong JR, Dierckx RAJO, van Velden FHP, Boellaard R. SMART (SiMulAtion and reconstruction) PET: an efficient PET simulation-reconstruction tool. EJNMMI Phys. 2018;5(1):16. https://doi.org/10.1186/s40658-018-0215-x.
Tsoumpas C, et al. Fast generation of 4D PET-MR data from real dynamic MR acquisitions. Phys Med Biol. 2011;56(20):6597–613. https://doi.org/10.1088/0031-9155/56/20/005.
Hamdi M, et al. Evaluation of attenuation correction in PET/MRI with synthetic lesion insertion. J Med Imag. 2021. https://doi.org/10.1117/1.jmi.8.5.056001.
Delso G, et al. Performance measurements of the siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52(12):1914–22. https://doi.org/10.2967/jnumed.111.092726.
Koesters T, et al. Dixon sequence with superimposed model-based bone compartment provides highly accurate PET/MR attenuation correction of the brain. J Nucl Med. 2016;57(6):918–24. https://doi.org/10.2967/jnumed.115.166967.
Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med. 2010;51(5):812–8. https://doi.org/10.2967/jnumed.109.065425.
Chen Y, et al. Deep learning-based T1-enhanced selection of linear attenuation coefficients (DL-TESLA) for PET/MR attenuation correction in dementia neuroimaging. Magn Reson Med. 2021;86(1):499–513. https://doi.org/10.1002/MRM.28689.
Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag. 1994;13(4):601–9. https://doi.org/10.1109/42.363108.
Paulus DH, et al. Whole-body PET/MR imaging: quantitative evaluation of a novel model-based MR attenuation correction method including bone. J Nucl Med. 2015;56(7):1061–6. https://doi.org/10.2967/jnumed.115.156000.
Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143–56. https://doi.org/10.1016/S1361-8415(01)00036-6.
Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys. 1998;25(10):2046–63. https://doi.org/10.1118/1.598392.
Jan S, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49(19):4543–61. https://doi.org/10.1088/0031-9155/49/19/007.