An automatic pipeline for PET/MRI attenuation correction validation in the brain
Tóm tắt
Từ khóa
Tài liệu tham khảo
Huang SC, Hoffman EJ, Phelps ME, Kuh DE. Quantitation in positron emission computed tomography: 2. effects of inaccurate attenuation correction. J Comput Assist Tomogr. 1979;3(6):804–14. https://doi.org/10.1097/00004728-197903060-00018.
Catana C, Drzezga A, Heiss WD, Rosen BR. PET/MRI for neurologic applications. J Nucl Med. 2012;53(12):1916–25. https://doi.org/10.2967/jnumed.112.105346.
Fraum TJ, Fowler KJ, McConathy J. PET/MRI: emerging clinical applications in oncology. Acad Radiol. 2016;23(2):220–36. https://doi.org/10.1016/j.acra.2015.09.008.
Keereman V, Mollet P, Berker Y, Schulz V, Vandenberghe S. Challenges and current methods for attenuation correction in PET/MR. Magn Reson Mater Phys Biol Med. 2013;26(1):81–98. https://doi.org/10.1007/s10334-012-0334-7.
Martinez-Möller A, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50(4):520–6. https://doi.org/10.2967/jnumed.108.054726.
Ladefoged CN, et al. A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients. Neuroimage. 2017;147:346–59. https://doi.org/10.1016/j.neuroimage.2016.12.010.
Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology. 2018;286(2):676–84. https://doi.org/10.1148/radiol.2017170700.
Berker Y, Li Y. Attenuation correction in emission tomography using the emission data: a review. Med Phys. 2016;43(2):807–32. https://doi.org/10.1118/1.4938264.
Mansur A, Newbould R, Searle GE, Redstone C, Gunn RN, Hallett WA. PET-MR attenuation correction in dynamic brain PET using [11C]cimbi-36: a direct comparison with PET-CT. IEEE Trans Radiat Plasma Med Sci. 2018;2(5):483–9. https://doi.org/10.1109/TRPMS.2018.2852558.
Ladefoged CN, et al. AI-driven attenuation correction for brain PET/MRI: clinical evaluation of a dementia cohort and importance of the training group size. Neuroimage. 2020;222:117221. https://doi.org/10.1016/j.neuroimage.2020.117221.
Jan S, et al. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys Med Biol. 2011;56(4):881–901. https://doi.org/10.1088/0031-9155/56/4/001.
Papadimitroulas P, et al. Investigation of realistic PET simulations incorporating tumor patient’s specificity using anthropomorphic models: creation of an oncology database. Med Phys. 2013;10(1118/1):4826162.
Le Maitre A, et al. Incorporating patient-specific variability in the simulation of realistic whole-body 18F-FDG distributions for oncology applications. Proc IEEE. 2009;97(12):2026–38. https://doi.org/10.1109/JPROC.2009.2027925.
Islam J, Zhang Y. GAN-based synthetic brain PET image generation. Brain Inform. 2020;7(1):1–12. https://doi.org/10.1186/S40708-020-00104-2/FIGURES/9.
Berthon B, et al. PETSTEP: generation of synthetic PET lesions for fast evaluation of segmentation methods. Phys Med. 2015. https://doi.org/10.1016/j.ejmp.2015.07.139.
Pfaehler E, De Jong JR, Dierckx RAJO, van Velden FHP, Boellaard R. SMART (SiMulAtion and reconstruction) PET: an efficient PET simulation-reconstruction tool. EJNMMI Phys. 2018;5(1):16. https://doi.org/10.1186/s40658-018-0215-x.
Tsoumpas C, et al. Fast generation of 4D PET-MR data from real dynamic MR acquisitions. Phys Med Biol. 2011;56(20):6597–613. https://doi.org/10.1088/0031-9155/56/20/005.
Hamdi M, et al. Evaluation of attenuation correction in PET/MRI with synthetic lesion insertion. J Med Imag. 2021. https://doi.org/10.1117/1.jmi.8.5.056001.
Delso G, et al. Performance measurements of the siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52(12):1914–22. https://doi.org/10.2967/jnumed.111.092726.
Koesters T, et al. Dixon sequence with superimposed model-based bone compartment provides highly accurate PET/MR attenuation correction of the brain. J Nucl Med. 2016;57(6):918–24. https://doi.org/10.2967/jnumed.115.166967.
Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med. 2010;51(5):812–8. https://doi.org/10.2967/jnumed.109.065425.
Chen Y, et al. Deep learning-based T1-enhanced selection of linear attenuation coefficients (DL-TESLA) for PET/MR attenuation correction in dementia neuroimaging. Magn Reson Med. 2021;86(1):499–513. https://doi.org/10.1002/MRM.28689.
Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag. 1994;13(4):601–9. https://doi.org/10.1109/42.363108.
Paulus DH, et al. Whole-body PET/MR imaging: quantitative evaluation of a novel model-based MR attenuation correction method including bone. J Nucl Med. 2015;56(7):1061–6. https://doi.org/10.2967/jnumed.115.156000.
Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143–56. https://doi.org/10.1016/S1361-8415(01)00036-6.
Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys. 1998;25(10):2046–63. https://doi.org/10.1118/1.598392.
Jan S, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49(19):4543–61. https://doi.org/10.1088/0031-9155/49/19/007.