An automated lung segmentation approach using bidirectional chain codes to improve nodule detection accuracy

Computers in Biology and Medicine - Tập 57 - Trang 139-149 - 2015
Shiwen Shen1,2, Alex A.T. Bui2, Jason Cong3, William Hsu2
1Department of Bioengineering, University of California, Los Angeles, CA, USA
2Medical Imaging Informatics (MII) Group, Department of Radiological Sciences, University of California, Los Angeles, CA, USA
3Department of Computer Science, University of California, Los Angeles, CA, USA

Tài liệu tham khảo

Lee, 2012, Automated detection of lung nodules in computed tomography images: a review, Mach. Vis. Appl., 23, 151, 10.1007/s00138-010-0271-2 Aberle, 2011, Reduced lung-cancer mortality with low-dose computed tomographic screening, N. Engl. J. Med., 365, 395, 10.1056/NEJMoa1102873 Screening for lung cancer. 〈http://www.lungcancer.org/find_information/publications/163-lung_cancer_101/274-screening〉. Li, 2007, Recent progress in computer-aided diagnosis of lung nodules on thin-section CT, Comput. Med. Imag. Graph., 31, 248, 10.1016/j.compmedimag.2007.02.005 Marten, 2005, Computer-aided detection of pulmonary nodules: influence of nodule characteristics on detection performance, Clin. Radiol., 60, 196, 10.1016/j.crad.2004.05.014 Retico, 2008, Lung nodule detection in low-dose and thin-slice computed tomography, Comput. Biol. Med., 38, 525, 10.1016/j.compbiomed.2008.02.001 Armato, 2004, Automated lung segmentation for thoracic CT: impact on computer-aided diagnosis1, Acad. Radiol., 11, 1011, 10.1016/j.acra.2004.06.005 Pu, 2008, Adaptive border marching algorithm: automatic lung segmentation on chest CT images, Comput. Med. Imag. Graph., 32, 452, 10.1016/j.compmedimag.2008.04.005 Ali Asem M., Ayman S. El-Baz, Farag Aly A. A novel framework for accurate lung segmentation using graph cuts, in: 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007. IEEE, 2007. Ali, 2008, Automatic lung segmentation of volumetric low-dose CT scans using graph cuts, 258 Screening for Lung Cancer, Topic Page. U.S. Preventive Services Task Force. 〈http://www.uspreventiveservi-cestaskforce.org/uspstf/uspslung.htm〉. Hedlund, 1982, Two methods for isolating the lung area of a CT scan for density information, Radiology, 144, 353, 10.1148/radiology.144.2.7089289 Das, 2006, Small pulmonary nodules: effect of two computer-aided detection systems on radiologist performance, Radiology, 241, 564, 10.1148/radiol.2412051139 Hu, 2001, Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images, IEEE Trans. Med. Imag., 20, 490, 10.1109/42.929615 Bae, 2005, Pulmonary nodules: automated detection on CT images with morphologic matching algorithm—preliminary results, Radiology, 236, 286, 10.1148/radiol.2361041286 Sun, 2006, 3D computerized segmentation of lung volume with computed tomography, Acad. Radiol., 13, 670, 10.1016/j.acra.2006.02.039 Armato, 1998, Automated lung segmentation in digitized posteroanterior chest radiographs, Acad. Radiol., 5, 245, 10.1016/S1076-6332(98)80223-7 Brown, 1997, Method for segmenting chest CT image data using an anatomical model: preliminary results, IEEE Trans. Med. Imag., 16, 828, 10.1109/42.650879 Brown, 2000, Knowledge-based segmentation of thoracic computed tomography images for assessment of split lung function, Med. Phys., 27, 592, 10.1118/1.598898 Wang, 2009, Automated segmentation of lungs with severe interstitial lung disease in CT, Med. Phys., 36, 4592, 10.1118/1.3222872 Kim, 2003, Pulmonary nodule detection using chest CT images, Acta Radiol., 44, 252, 10.1080/j.1600-0455.2003.00061.x Ko, 2001, Chest CT: automated nodule detection and assessment of change over time—preliminary experience, Radiology, 218, 267, 10.1148/radiology.218.1.r01ja39267 Korfiatis, 2008, Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT, Med. Phys., 35, 5290, 10.1118/1.3003066 Prasad, 2008, Automatic segmentation of lung parenchyma in the presence of diseases based on curvature of ribs, Acad. Radiol., 15, 1173, 10.1016/j.acra.2008.02.004 Pu, 2008, An automated CT based lung nodule detection scheme using geometric analysis of signed distance field, Med. Phys., 35, 3453, 10.1118/1.2948349 Ingrid, 2005, Toward automated segmentation of the pathological lung in CT, IEEE Trans. Med. Imag., 24, 1025, 10.1109/TMI.2005.851757 Hua, Panfang, et al., Segmentation of pathological and diseased lung tissue in CT images using a graph-search algorithm, in: IEEE International Symposium on Biomedical Imaging: from Nano to Macro, 2011. Sun, 2012, Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach, IEEE Trans. Med. Imag., 31, 449, 10.1109/TMI.2011.2171357 van Rikxoort, 2009, Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection, Med. Phys., 36, 2934, 10.1118/1.3147146 Jacobs, 2011, 207 Maxine, 2011, A novel computer-aided lung nodule detection system for CT images, Med. Phys., 38, 5630, 10.1118/1.3633941 Messay, 2010, A new computationally efficient CAD system for pulmonary nodule detection in CT imagery, Med. Image. Anal., 14, 390, 10.1016/j.media.2010.02.004 Murphy, 2009, A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification, Med. Image. Anal., 13, 757, 10.1016/j.media.2009.07.001 Retico, 2008, Lung nodule detection in low-dose and thin-slice computed tomography, Comput. Biol. Med., 38, 525, 10.1016/j.compbiomed.2008.02.001 Riccardi, 2011, Computer-aided detection of lung nodules via 3D fast radial transform, scale space representation, and Zernike MIP classification, Med. Phys., 38, 1962, 10.1118/1.3560427 Choi, 2012, Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images, Inf. Sci., 212, 57, 10.1016/j.ins.2012.05.008 Ye, 2009, Shape-based computer-aided detection of lung nodules in thoracic CT images, IEEE Trans. Biomed. Eng., 56, 1810, 10.1109/TBME.2009.2017027 National Cancer Institute, Lung Image Database Consortium 〈http://imaging.cancer.gov/programsandresources/-InformationSystems/LIDC/page2〉. Otsu, 1975, A threshold selection method from gray-level histograms, Automatica, 11, 23 Gonzalez, 2002 McNitt-Gray, 2007, The Lung Image Database Consortium (LIDC) data collection process for nodule detection and annotation, Acad. Radiol., 14, 1464, 10.1016/j.acra.2007.07.021 Varshini, 2012, An improved adaptive border marching algorithm for inclusion of juxtapleural nodule in lung segmentation of CT-images, 230 Barros Netto, 2012, Automatic segmentation of lung nodules with growing neural gas and support vector machine, Comput. Biol. Med., 42, 1110, 10.1016/j.compbiomed.2012.09.003 Rubin, 2005, Pulmonary nodules on multi-detector row CT scans: performance comparison of radiologists and computer-aided detection, Radiology, 234, 274, 10.1148/radiol.2341040589 Jarvis, 1973, On the identification of the convex hull of a finite set of points in the plane, Inf. Process. Lett., 2.1, 18, 10.1016/0020-0190(73)90020-3 Choi, 2013, Automated pulmonary nodule detection system in computed tomography images: a hierarchical block classification approach, Entropy, 15, 507, 10.3390/e15020507 Wei, 2013, A fully automatic method for lung parenchyma segmentation and repairing, J. Dig. Imag., 26, 483, 10.1007/s10278-012-9528-9