Một sơ đồ xác thực và thỏa thuận khóa cho lưới điện thông minh

Peer-to-Peer Networking and Applications - Tập 15 - Trang 1595-1616 - 2022
Masoumeh Safkhani1, Saru Kumari2, Mohammad Shojafar3, Sachin Kumar4
1Computer Engineering Department, Shahid Rajaee Teacher Training University and School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
2Department of Mathematics, Chaudhary Charan Singh University, Meerut, India
3ICS/5GIC, University of Surrey, Guildford, UK
4Department of Computer Science and Engineering, Ajay Kumar Garg Engineering College, Ghaziabad, India

Tóm tắt

Internet vạn vật (IoT) đóng vai trò quan trọng trong thế hệ thành phố thông minh mới, trong đó phát triển Internet năng lượng (IoE) trong lĩnh vực năng lượng là một điều cần thiết. Đã có nhiều sơ đồ được đề xuất cho đến nay và trong bài báo này, chúng tôi phân tích bảo mật của một khuôn khổ xác thực và thỏa thuận khóa được đề xuất gần đây cho lưới điện thông minh, có tên là PALK. Phân tích bảo mật của chúng tôi chỉ ra rằng một kẻ tấn công có thể chiếm đoạt được mã định danh vĩnh viễn của người dùng và mật khẩu, điều này đủ để thực hiện bất kỳ cuộc tấn công nào khác. Để khắc phục các điểm yếu và sửa đổi PALK, chúng tôi đề xuất một giao thức cải tiến dựa trên Hàm không thể sao chép vật lý (PUF) để cung cấp mức độ bảo mật mong muốn với chi phí hợp lý. Chúng tôi cũng chứng minh bảo mật ngữ nghĩa của sơ đồ xây dựng bằng cách sử dụng mô hình thực và tổng hợp được chấp nhận rộng rãi, dưới giả thuyết Diffie-Hellman khó tính toán. Phân tích chi phí tính toán và liên lạc của giao thức cải tiến so với PALK, dựa trên các tập hợp tham số giống hệt nhau trong kết quả thực nghiệm của chúng tôi trên bảng Arduino UNO R3 với vi điều khiển ATmega328P, cho thấy sự cải thiện 46% và 23%, tương ứng. Chúng tôi cũng cung cấp thông tin về mức tiêu thụ năng lượng của giao thức được đề xuất, với mỗi phiên làm việc tiêu tốn gần 24 mJ năng lượng. Điều này chỉ ra rằng nó là một lựa chọn hợp lý cho các môi trường bị hạn chế, chẳng hạn như IoE.

Từ khóa

#Internet vạn vật #bảo mật #xác thực #thỏa thuận khóa #lưới điện thông minh #Hàm không thể sao chép vật lý #tiêu thụ năng lượng

Tài liệu tham khảo

Curiale M (2014) From smart grids to smart city. In: 2014 Saudi Arabia Smart Grid Conference (SASG), IEEE, pp 1–9 Bui N, Castellani AP, Casari P, Zorzi M (2012) The internet of energy: a web-enabled smart grid system. IEEE Network 26(4):39–45 Rana MM (2017) Architecture of the internet of energy network: An application to smart grid communications. IEEE Access 5:4704–4710 Lin C, Deng D, Liu W, Chen L (2017) Peak load shifting in the internet of energy with energy trading among end-users. IEEE Access 5:1967–1976 Morello R, Mukhopadhyay SC, Liu Z, Slomovitz D, Samantaray SR (2017) Advances on sensing technologies for smart cities and power grids: A review. IEEE Sens J 17(23):7596–7610 Photovoltaics DG, Storage E (2011) Ieee guide for smart grid interoperability of energy technology and information technology operation with the electric power system (eps), end-use applications, and loads. Institute of Electrical and Electronics Engineers, New York, NY Saleh MS, Althaibani A, Esa Y, Mhandi Y, Mohamed AA (2015) Impact of clustering microgrids on their stability and resilience during blackouts. In: 2015 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), IEEE, pp 195–200 Caballero V, Vernet D, Zaballos A (2019) Social internet of energy - A new paradigm for demand side management. IEEE Internet Things J 6(6):9853–9867. https://doi.org/10.1109/JIOT.2019.2932508 Fang D, Guan X, Lin L, Peng Y, Sun D, Hassan MM (2020) Edge intelligence based economic dispatch for virtual power plant in 5g internet of energy. Comput Commun 151:42–50. https://doi.org/10.1016/j.comcom.2019.12.021 Kabalci E, Kabalci Y (2019) From Smart Grid to Internet of Energy. Academic Press Sakib N, Hossain E, Ahamed SI (2020) A qualitative study on the united states internet of energy: A step towards computational sustainability. IEEE Access 8:69003–69037. https://doi.org/10.1109/ACCESS.2020.2986317 Zhong W, Xie K, Liu Y, Yang C, Xie S, Zhang Y (2019) ADMM empowered distributed computational intelligence for internet of energy. IEEE Comput Intell Mag 14(4):42–51. https://doi.org/10.1109/MCI.2019.2937611 Eder-Neuhauser P, Zseby T, Fabini J, Vormayr G (2017) Cyber attack models for smart grid environments. Sustainable Energy, Grids and Networks 12:10–29 Peng C, Sun H, Yang M, Wang Y (2019) A survey on security communication and control for smart grids under malicious cyber attacks. IEEE Trans Systems, Man, Cybernetics: Systems 49(8):1554–1569 Kumar P, Lin Y, Bai G, Paverd A, Dong JS, Martin A (2019) Smart grid metering networks: A survey on security, privacy and open research issues. IEEE Commun Surv Tutor 21(3):2886–2927 Ghosal A, Conti M (2019) Key management systems for smart grid advanced metering infrastructure: A survey. IEEE Commun Surv Tutor 21(3):2831–2848 Rostampour S, Safkhani M, Bendavid Y, Bagheri N (2020) Eccbap: a secure ecc based authentication protocol for iot edge devices. Pervasive and Mobile Computing pp 1–33 Abbasinezhad-Mood D, Nikooghadam M (2018a) An anonymous ecc-based self-certified key distribution scheme for the smart grid. IEEE Trans Industrial Electronics 65(10):7996–8004 Khan AA, Kumar V, Ahmad M, Rana S, Mishra D (2020) PALK: Password-based anonymous lightweight key agreement framework for smart grid author links open overlay panel. Int J Elect Power Energy Syst 121:106121 Wu F, Xu L, Li X, Kumari S, Karuppiah M, Obaidat MS (2019) A lightweight and provably secure key agreement system for a smart grid with elliptic curve cryptography. IEEE Syst J 13(3):2830–2838 Fouda MM, Fadlullah ZM, Kato N, Lu R, Shen XS (2011) A lightweight message authentication scheme for smart grid communications. IEEE Trans Smart Grid 2(4):675–685 Wu D, Zhou C (2011) Fault-tolerant and scalable key management for smart grid. IEEE Trans Smart Grid 2(2):375–381 Xia J, Wang Y (2012) Secure key distribution for the smart grid. IEEE Trans Smart Grid 3(3):1437–1443 Sule R, Katti RS, Kavasseri RG (2012) A variable length fast message authentication code for secure communication in smart grids. In: 2012 IEEE Power Energy Soc Gen Meet, IEEE, pp 1–6 Park JH, Kim M, Kwon D (2013) Security weakness in the smart grid key distribution scheme proposed by xia and wang. IEEE Trans Smart Grid 4(3):1613–1614 Nicanfar H, Leung VC (2013) Multilayer consensus ecc-based password authenticated key-exchange (mcepak) protocol for smart grid system. IEEE Trans Smart Grid 4(1):253–264 Tsai JL, Lo NW (2015) Secure anonymous key distribution scheme for smart grid. IEEE Trans Smart Grid 7(2):906–914 Odelu V, Das AK, Wazid M, Conti M (2016) Provably secure authenticated key agreement scheme for smart grid. IEEE Trans Smart Grid 9(3):1900–1910 He D, Wang H, Khan MK, Wang L (2016a) Lightweight anonymous key distribution scheme for smart grid using elliptic curve cryptography. IET Commun 10(14):1795–1802 He D, Wang H, Khan MK, Wang L (2016b) Lightweight anonymous key distribution scheme for smart grid using elliptic curve cryptography. IET Commun 10(14):1795–1802 Mahmood K, Chaudhry SA, Naqvi H, Shon T, Ahmad HF (2016) A lightweight message authentication scheme for smart grid communications in power sector. Comput Electr Eng 52:114–124 Mahmood K, Chaudhry SA, Naqvi H, Kumari S, Li X, Sangaiah AK (2018) An elliptic curve cryptography based lightweight authentication scheme for smart grid communication. Futur Gener Comput Syst 81:557–565 Chen Y, Martínez JF, Castillejo P, López L (2017) An anonymous authentication and key establish scheme for smart grid: Fauth. Energies 10(9):1354 Braeken A, Kumar P, Martin A (2018) Efficient and provably secure key agreement for modern smart metering communications. Energies 11(10):2662 Abbasinezhad-Mood D, Nikooghadam M (2018b) Design and extensive hardware performance analysis of an efficient pairwise key generation scheme for smart grid. Int J Commun Syst 31(5):e3507 Li X, Wu F, Kumari S, Xu L, Sangaiah AK, Choo KKR (2019) A provably secure and anonymous message authentication scheme for smart grids. J Parallel Distributed Comput 132:242–249 Dolev D, Yao A (1983) On the security of public key protocols. IEEE Trans Inf Theory 29(2):198–208 Chaudhry SA (2021) Correcting palk: Password-based anonymous lightweight key agreement framework for smart grid. Int J Electr Power Energy Syst 125:106529 Abdalla M, Fouque P, Pointcheval D (2005) Password-based authenticated key exchange in the three-party setting. In: Vaudenay S (ed) Public Key Cryptography - PKC 2005, 8th International Workshop on Theory and Practice in Public Key Cryptography, Les Diablerets, Switzerland, January 23-26, 2005, Proceedings, Springer, Lecture Notes in Computer Science, vol 3386, pp 65–84 Alheyasat A, Torrens G, Bota SA, Alorda B (2020) Selection of SRAM cells to improve reliable PUF implementation using cell mismatch metric. In: XXXV Conference on Design of Circuits and Integrated Systems, DCIS 2020, Segovia, Spain, November 18-20, 2020, IEEE, pp 1–6, 10.1109/DCIS51330.2020.9268669. https://doi.org/10.1109/DCIS51330.2020.9268669 Ge W, Hu S, Huang JQ, Liu B, Zhu M (2020) FPGA implementation of a challenge pre-processing structure arbiter PUF designed for machine learning attack resistance. IEICE Electron Express 17(2):20190670. https://doi.org/10.1587/elex.16.20190670 Hamadeh H, Tyagi A (2021) An FPGA implementation of privacy preserving data provenance model based on PUF for secure internet of things. SN Comput Sci 2(1):65. https://doi.org/10.1007/s42979-020-00428-0 Kumar MA, Bhakthavatchalu R (2017) Fpga based delay puf implementation for security applications. In: 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), pp 1–6, https://doi.org/10.1109/TAPENERGY.2017.8397339 Masoumi M, Dehghan A (2020) Design and implementation of a ring oscillator-based physically unclonable function on field programmable gate array to enhance electronic security. Int J Electron Secur Digit Forensics 12(3):243–261. https://doi.org/10.1504/IJESDF.2020.108295 Soybali M, Örs SB, Saldamli G (2011) Implementation of a PUF circuit on a FPGA. In: 4th IFIP International Conference on New Technologies, Mobility and Security, NTMS 2011, Paris, France, February 7-10, 2011, IEEE, pp 1–5. https://doi.org/10.1109/NTMS.2011.5720638 Zalivaka SS, Ivaniuk AA, Chang C (2019) Reliable and modeling attack resistant authentication of arbiter PUF in FPGA implementation with trinary quadruple response. IEEE Trans Inf Forensics Secur 14(4):1109–1123. https://doi.org/10.1109/TIFS.2018.2870835 Chatterjee U, Mukhopadhyay D, Chakraborty RS (2021) 3paa: A private PUF protocol for anonymous authentication. IEEE Trans Inf Forensics Secur 16:756–769, 10.1109/TIFS.2020.3021917. https://doi.org/10.1109/TIFS.2020.3021917 Alkatheiri MS, Sangi AR, Anamalamudi S (2020) Physical unclonable function (puf)-based security in internet of things (iot): Key challenges and solutions. In: Gupta BB, Pérez GM, Agrawal DP, Gupta D (eds) Handbook of Computer Networks and Cyber Security. Springer, Principles and Paradigms, pp 461–473 Choi K, Baek S, Heo J, Hong J (2020) A 100% stable sense-amplifier-based physically unclonable function with individually embedded non-volatile memory. IEEE Access 8:21857–21865 Jeon D, Baek J, Kim Y, Lee J, Kim DK, Choi B (2020) A physical unclonable function with bit error rate \(\times 10{-8}\) based on contact formation probability without error correction code. J Solid-State Circuits 55(3):805–816 Lee S, Oh M, Kang Y, Choi D (2020) Design of resistor-capacitor physically unclonable function for resource-constrained iot devices. Sensors 20(2):404 Sahoo DP, Mukhopadhyay D, Chakraborty RS, Nguyen PH (2018) A multiplexer-based arbiter PUF composition with enhanced reliability and security. IEEE Trans Computers 67(3):403–417 Safkhani M, Bagheri N (2016) Generalized Desynchronization Attack on UMAP: Application to RCIA, KMAP, SLAP and SASI\({}^{\text{+}}\) protocols. IACR Cryptol ePrint Arch 2016:905. http://eprint.iacr.org/2016/905 Leurent G, Peyrin T (2019) From collisions to chosen-prefix collisions application to full SHA-1. In: Ishai Y, Rijmen V (eds) Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III, Springer, Lecture Notes in Computer Science, vol 11478, pp 527–555 Sa PK, Kumari S, Sharma V, Sangaiah AK, Wei J, Li X (2018) A certificateless aggregate signature scheme for healthcare wireless sensor network. Sustain Comput Informatics Syst 18:80–89 Atmel (last accessed 2020/6/10) 8-bit avr microcontroller with 32k bytes in-system programmable flash. microchip. http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf