Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá quy mô bản đồ thực vật cho việc quản lý khu bảo tồn: liệu quy mô đánh giá có chi phối kết quả đánh giá?
Tóm tắt
Quy mô là một yếu tố quan trọng trong đánh giá đa dạng sinh học; việc đánh giá ở những quy mô không phù hợp có thể làm giảm tính chính xác của các đánh giá và dẫn đến những kết quả quản lý kém. Một bộ dữ liệu chính cho nhiều khu bảo tồn là bản đồ các mẫu thực vật. Tuy nhiên, tính phù hợp, quy mô và độ chính xác của các giá trị thực vật được lập bản đồ hiếm khi được đánh giá. Nghiên cứu này đã đánh giá việc lập bản đồ thực vật được thực hiện ở các quy mô khác nhau bằng cách sử dụng hai phương pháp cạnh tranh phổ biến. Mục đích là để đánh giá tính hữu ích của bản đồ cho kế hoạch quản lý trong một khu bảo tồn quan trọng (Khu bảo tồn Bang Mugii Murum-ban – MSCA) có vai trò quan trọng trong Khu Di sản Thế giới Greater Blue Mountains có giá trị toàn cầu tại miền Đông Australia. Việc lập bản đồ theo cách mô hình phổ biến đã không phát hiện được sáu trong số 21 loại thực vật trong MSCA. Những loại thực vật này là một phần của bốn hệ sinh thái hiếm và/hoặc đang bị đe dọa. Độ chính xác tổng thể (66%) thấp hơn so với bản đồ quy mô tiểu vùng dựa trên việc giải thích ảnh hàng không (77%) được hỗ trợ bởi mức độ dữ liệu thực địa và kiến thức địa phương cao hơn. Do đó, mức độ gán nhãn không gian cao hơn áp dụng cho mô hình hóa không liên quan đến độ chính xác bản đồ tăng lên, mặc dù độ chính xác thay đổi lớn giữa các loại thực vật. Sản phẩm bản đồ mô hình có phương pháp nhất quán trên toàn bang New South Wales và cung cấp bối cảnh quan trọng cho việc lập bản đồ tiểu vùng, nhưng đã chứng tỏ không phù hợp cho việc lập kế hoạch quản lý khu bảo tồn.
Từ khóa
#đánh giá quy mô #bản đồ thực vật #đa dạng sinh học #quản lý khu bảo tồn #Greater Blue MountainsTài liệu tham khảo
Alexander JM, Atwater DZ, Colautti RI, Hargreaves AL (2022) Effects of species interactions on the potential for evolution at species’ range limits. Philos Trans R Soc B. https://doi.org/10.1098/rstb.2021.0020
Anderson M (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46
Badgley C (2003) The multiple scales of biodiversity. Paleobiology 29(1):11–13
Bailey RG (1985) The factor of scale in ecosystem mapping. Environ Manag 9:271–275. https://doi.org/10.1007/BF01867299
Banks SA, Skilleter GA (2007) The importance of incorporating fine-scale habitat data into the design of an intertidal marine reserve system. Biol Conserv 138(1):13–29. https://doi.org/10.1016/j.biocon.2007.03.021
Bayraktarov E, Ehmke G, O’Connor J, Burns EL, Nguyen H, McRae L, Possingham HP, Lindenmayer DB (2019) Do big unstructured biodiversity data mean more knowledge? Front Ecol Evol. https://doi.org/10.3389/fevo.2018.00239
Braga-Pereira F, Morcatty TQ, El Bizri HR, Tavares AS, Mere-Roncal C, González-Crespo C, Bertsch C, Rodriguez CR, Bardales-Alvites C, von Mühlen EM, Bernárdez-Rodríguez GF, Paim FP, Tamayo JS, Valsecchi J, Gonçalves J, Torres-Oyarce L, Lemos LP, de Mattos Vieira MAR, BowlerM MP (2022) Congruence of local ecological knowledge (LEK)-based methods and line-transect surveys in estimating wildlife abundance in tropical forests. Methods Ecol Evol 13:743–756. https://doi.org/10.1111/2041-210X.13773
Brondizio ES, Settele J, Dıaz S, Ngo HT (2019) Global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. Popul Dev Rev 45:680–681. https://doi.org/10.1111/padr.12283
Burns PA, Clemann N, White M (2020) Testing the utility of species distribution modelling using random forest for a species in decline. Austral Ecol 45:706–716
Cantu-Salazar L, Gaston KJ (2010) Very large protected areas and their contribution to terrestrial biological conservation. Bioscience 60:808–818
Cavender-Bares J, Cavender N (2011) Phylogenetic structure of plant communities provides guidelines for restoration. In: Greipsson S (ed) Restoration ecology. Jones & Bartlett Learning, Sudbury, pp 119–129
Cavender-Bares J, Kothari S, Pearse W (2019) Evolutionary ecology of communities. https://doi.org/10.1093/OBO/9780199941728-0111. Accessed 3 July 2022
Chaplin-Kramer R, Brauman KA, Cavender-Bares J et al (2002) Conservation needs to integrate knowledge across scales. Nat Ecol Evol 6:118–119. https://doi.org/10.1038/s41559-021-01605-x
Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E Plymouth Marine Laboratories, Plymouth
Dakos V, Soler-Toscano F (2017) Measuring complexity to infer changes in the dynamics of ecological systems under stress. Ecol Complex 32:144–155
DEC (2006a) The Vegetation of the Western Blue Mountains including the Capertee, Coss, Jenolan & Gurnang Areas, Volume 1 Technical Report. Unpublished report funded by the Hawkesbury – Nepean Catchment Management Authority. Department of Environment and Conservation, Hurstville
DEC (2006b) The Vegetation of the Western Blue Mountains, including the Capertee, Coss, Jenolan & Gurnang Areas Volume 2 Vegetation Community Profiles. Department of Environment and Conservation, Hurstville
DPE (2022) Native vegetation regulatory map method statement, Appendices. Department of Environment and Planning, Parramatta
DPIE (2020) Biodiversity assessment method. Department of Planning, Industry and Environment, Parramatta, NSW, Australia
EcoLogical (2011) Field verification of vegetation mapping on the Tarcutta 100K mapsheet. Ecological, Sydney
Felix NA, Binney DL (1989) Accuracy assessment of a landstat-assisted vegetation map of the coastal plain of the Arctic National Wildlife Refuge. Photogramm Eng Remote Sens 55(4):475–478
Franklin J, Simons DK, Beardsley D, Rogan J, Gordon H (2001) Evaluating errors in a digital vegetation map with forest inventory data and accuracy assessment using fuzzy sets. Trans GIS 5:285–304
Gonçalves B, Marques A, Amadeu DM, Soares MV, Pereira HM (2015) Biodiversity offsets: from current challenges to harmonized metrics. Curr Opin Environ Sustain 14:61–67
Gordon JE, Newton AC (2006) The potential misapplication of rapid plant diversity assessment in tropical conservation. J Nat Conserv 14(2):117–126
Gross K (2008) Positive interactions among competitors can produce species-rich communities. Ecol Lett 11:929–936. https://doi.org/10.1111/j.1461-0248.2008.01204.x
Holdway RJ, Wiser SK, Williams PA (2012) Status assessment of New Zealand’s naturally uncommon ecosystems. Conserv Biol 26(4):619–629
Hunter J (2001) Vegetation change in semi-permanent or ephemeral montane marshes (lagoons) of the New England Tablelands Bioregion. Aust J Bot 69(7):478. https://doi.org/10.1071/BT20028
IUCN (2016) An introduction to the IUCN red list for ecosystems: the categories and criteria for assessing risks to ecosystems. Gland, Switzerland: Version 2016–1. http://iucnrle.org/, downloaded on 4 February 2020
Keith D (2009) The interpretation, assessment and conservation of ecological communities. Ecol Manag Restor 10:S16–S26
Keith DA, Ferrer-Paris JR, Nicholson E, Kingsford RT (eds) (2020) The IUCN global ecosystem typology 2.0: descriptive profiles for biomes and ecosystem functional groups. Gland, Switzerland
König C, Weigelt P, Schrader J, Taylor A, Kattge J, Kreft H (2019) Biodiversity data integration: the significance of data resolution and domain. PLoS Biol 17(3):e3000183. https://doi.org/10.1371/journal.pbio.3000183
Kyriakidis PC, Dungan JL (2001) A geostatistical approach for mapping thematic classification accuracy and evaluating the impact of inaccurate spatial data on ecological model predictions. Environ Ecol Stat 8:311–330. https://doi.org/10.1023/A:1012778302005
Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, Barraclough TG (2012) Species interactions alter evolutionary responses to a novel environment. PLoS Biol 10(5):e1001330. https://doi.org/10.1371/journal.pbio.1001330
Leitão RP, Zuanon J, Villéger S, Williams SE, Baraloto C, Fortunel CC, Mendonça FP, Mouillot D (2016) Rare species contribute disproportionately to the functional structure of species assemblages. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2016.0084
Lewis D, Phinn S (2011) Accuracy assessment of vegetation community maps generated by aerial photography interpretation: perspective from the tropical savanna, Australia. J Appl Remote Sens 5:1–16
Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253
Maxwell SL, Cazalis V, Dudley N et al (2020) Area-based conservation in the twenty-first century. Nature 586:217–227. https://doi.org/10.1038/s41586-020-2773-z
Mayani-Parás F, Botello F, Castañeda S, Munguía-Carrara M, Sánchez-Cordero V (2021) Cumulative habitat loss increases conservation threats on endemic species of terrestrial vertebrates in Mexico. Biol Conserv 253:108864. https://doi.org/10.1016/j.biocon.2020.108864
McLeannan DS, Ronalds IE (2000) Classification and management of rare ecosystems in British Columbia. In: Darling LM (ed) Proceedings of a conference on the biology and management of species and habitats at risk, Kamloops, B.C., 15-19 Feb, 1999. Volume One. B.C. Ministry of Environment, Lands and Parks, Victoria, B.C. and University College of the Cariboo, Kamloops, B.C., p 490
O’Donoghue B, Lyons R (2007) Accuracy Assessment: Cowpens National Battlefield Vegetation Map. NatureServe, Durham
OEH (2012) The Native Vegetation of North-west Wollemi National Park and Surrounds. Volume 1: Technical Report. Version 1. Office of Environment and Heritage, Department of Premier and Cabinet, Sydney
OEH (2017) The NSW State Vegetation Type Map: Methodology for a regional-scale map of NSW plant community types. A description of the mapping method. Version 3. Office of Environment and Heritage, Sydney
Powell RL, Matzke N, de Souza C, Clark M, Numata I, Hess LL, Roberts DA (2004) Sources of error in accuracy assessment of the thematic land-cover maps in the Brazilian Amazon. Remote Sens Environ 90(2):221–234. https://doi.org/10.1016/j.rse.2003.12.007
RPS (2014) Airly Mine Extension Project Flora and Fauna Assessment. RPS Broadmeadow NSW. majorprojects.planningportal.nsw.gov.au (search for Airly Flora and Fauna Assessment)
Sayre R, Karagulle D, Frye C et al (2020) An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems. Glob Ecol Conserv 21:e00860
Shriner SA, Wilson KR, Flather CH (2006) Reserve networsk based on richness hotspots and representation vary with scale. Ecol Appl 16(5):1660–1673. https://doi.org/10.1890/1051-0761(2006)016[1660:RNBORH]2.0.CO;2
Simmonds JS, Dyer AB, Fitzsimons J, Hichley D, Maron M (2021) Assessing biodiversity and cultural values for single-site and multi-property development proposals in northern Australia. NESP Threatened Species Recovery Hub, Project 73 report, Brisbane
Smith RJ, Bennun L, Brooks TM et al (2019) Synergies between the key biodiversity area and systematic conservation planning approaches. Conserv Lett 2:e12625. https://doi.org/10.1111/conl.12625
Socolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) How should beta-diversity inform biodiversity conservation? Trends Ecol Evol 31(1):67–80
Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Model 148:1–13
Swinburn ML, Fleming P, Craig M, Grigg A, Garkaklis MJ, Hobbs RJ, Hardy G (2007) The importance of grasstrees (Xanthorrhoea preissii) as habitat for mardo (Antechinus flavipes leucogaster) during post-fire recovery. Wildl Res 34(8):640–651
Thackway R, Cresswell ID (eds) (1995) An interim biogeographic regionalisation for Australia: a framework for Establishing the National System of Reserves, Version 4.0. Australian Nature Conservation Agency, Canberra
Tierney DA (2022) Linking restoration to the IUCN red list for ecosystems: a case study of how we might track the Earth’s ecosystems. Austral Ecol 47(4):852–866. https://doi.org/10.1111/aec.13168
Tierney DA, Gallagher RV, Allen S, Auld TD (2021) Multiple analyses redirect management and restoration priorities for a critically endangered ecological community. Austral Ecol. https://doi.org/10.1111/aec.13003
Valiente-Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A, Galetti M, García MB, García D, Gómez JM, Jordano P, Medel R, Navarro L, Obeso JR, Oviedo R, Ramírez N, Rey PJ, Traveset A, Verdú M, Zamora R (2015) Beyond species loss: the extinction of ecological interactions in a changing world. Funct Ecol 29:299–307. https://doi.org/10.1111/1365-2435.12356
Verdon SJ, Watson SJ, Nimmo DG, Clarke MF (2020) Are all fauna associated with the same structural features of the foundation species Triodia scariosa? Austral Ecol 45(6):773–787
Watchorn DJ, Cowan MA, Driscoll DA, Nimmo DG, Ashman KR, Garkaklis MJ, Wilson BA, Doherty T (2022) Artificial habitat structures for animal conservation: design and implementation, risks and opportunities. Front Ecol Environ. https://doi.org/10.1002/fee.2470
Weiskopf SR, Harmáčková ZV, Johnson CG, Londoño-Murcia MC, Miller BW, Myers BJE, Pereira L, Arce-Plata MI, Blanchard JL, Ferrier S, Fulton EA, Harfoot M, Isbell F, Johnson JA, Mori AS, Weng E, Rosa IMD (2022) Increasing the uptake of ecological model results in policy decisions to improve biodiversity outcomes. Environ Modell Softw 149:105318. https://doi.org/10.1016/j.envsoft.2022.105318
Wilk RJ, Lesmeister DB, Forsman ED (2018) Nest tress of northern spotted owls (Strix occidentalis caurina) in Washington and Oregon, USA. PLoS ONE. https://doi.org/10.1371/journal.pone.0197887
Wintle BA, Cadenhead NCA, Morgain RA, Legge SM, Bekessy SA, Cantele M, Possingham HP, Watson JEM, Maron M, Keith DA, Garnett ST, Woinarski JCZ, Lindenmayer CB (2019) Spending to save: what will it cost to halt Australia’s extinction crisis? Conserv Lett. https://doi.org/10.1111/conl.12682
Wiser SK, Buxton RP, Clarkson BR, Hoare RJB, Holdaway RJ, Richardson SJ, Smale MC, West C, Williams PA (2013) New Zealand’s naturally uncommon ecosystems. In: Dymond JR (ed) Ecosystem services in New Zealand: conditions and trends. Manaaki Whenua Press, Lincoln, pp 49–61
Wyborn C, Evans MC (2022) Conservation needs to break free from global priority mapping. Nat Ecol Evol 5:1322–1324. https://doi.org/10.1038/s41559-021-01540-x