An assessment of reef coral calcification over the late Cenozoic
Tài liệu tham khảo
Al-Horani, 2016, Physiology of skeletogenesis in scleractinian corals, 192
Baker, 2004, Corals' adaptive response to climate change, Nature, 430, 741, 10.1038/430741a
Barker, 2002, Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2, Science, 297, 833, 10.1126/science.1072815
Barnes, 1993, On the nature and causes of density banding in massive coral skeleton, J. Exp. Mar. Biol. Ecol., 167, 91, 10.1016/0022-0981(93)90186-R
Beaufort, 2011, Sensitivity of coccolithophores to carbonate chemistry and ocean acidification, Nature, 476, 80, 10.1038/nature10295
Benson, 2019, Apparent timing of density banding in the Caribbean coral Siderastrea siderea suggests complex role of key physiological variables, Coral Reefs, 38, 165, 10.1007/s00338-018-01753-w
Blanchon, 2011, Last interglacial and reef development, 621
Böcker, 2014, Interannual and seasonal climate variability recorded by reef corals, Plio/Pleistocene (Florida) and Mio/Pliocene (Dominican Republic), 141
Booker, 2019, Insights into sea surface temperatures from the Cayman Islands from corals over the last ~540 years, Sediment. Geol., 389, 218, 10.1016/j.sedgeo.2019.06.008
Brachert, 1996, Record of climatic change in neritic carbonates: Turnovers in biogenic associations and depositional modes (Upper Miocene, southern Spain), Geol. Rundsch., 85, 327, 10.1007/BF02422238
Brachert, 2006, Porites corals from Crete (Greece) open a window into Late Miocene (10 Ma) seasonal and interannual climate variability, Earth Planet. Sci. Lett., 245, 81, 10.1016/j.epsl.2006.03.005
Brachert, 2006, Coral growth bands: A new and easy to use paleothermometer in paleoenvironment analysis and paleoceanography (late Miocene, Greece), Paleoceanography, 21, PA4217, 10.1029/2006PA001288
Brachert, 2007, High salinity variability during the early Messinian revealed by stable isotope signatures from vermetid and Halimeda reefs of the Mediterranean region, Geologica Romana, 40, 1
Brachert, 2013, Density banding in corals: barcodes of past and current climate change, Coral Reefs, 32, 1013, 10.1007/s00338-013-1056-7
Brachert, 2016, Upwelligs mitigated Plio-/Pleistocene heat stress for reef corals on the Florida platform (USA), Biogeosciences, 13, 1469, 10.5194/bg-13-1469-2016
Brachert, 2016, Low Florida coral calcification rates in the Plio-Pleistocene, Biogeosciences, 13, 4513, 10.5194/bg-13-4513-2016
Bruch, 2011, Precipitation patterns in the Miocene of Central europe and the development of continentality, Palaeogeogr. Palaeoclimatol. Palaeoecol., 304, 202, 10.1016/j.palaeo.2010.10.002
Budd, 2000, Diversity and extinction in the Cenozoic history of Caribbean reefs, Coral Reefs, 19, 25, 10.1007/s003380050222
Cahuzac, 1996, Structural and faunal evolution of Chattian - Miocene reefs and corals in western France and the Northeastern Atlantic Ocean, 105
Cahuzac, 1997, Sr isotope record in the area of the Lower Miocene historical stratotypus of the Aquitaine Basin, 33
Cai, 2010, Alkalinity distribution in the western North Atlantic Ocean margins, J. Geophys. Res., 115, C08014, 10.1029/2009JC005482
Crook, 2013, Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification, Proceed. Acad. Nat. Sci., 110, 11044, 10.1073/pnas.1301589110
Cuevas Miranda, 2009, Coral growth rates from the Holocene Cañada Honda fossil reef, Southwestern Dominican Republic: Comparisons with modern counterparts in high sedimentation settings, Caribb. J. Sci., 45, 94, 10.18475/cjos.v45i1.a13
Cuif, 2005, The Environment Recording Unit in coral skeletons – a synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibres, Biogeosciences, 2, 61, 10.5194/bg-2-61-2005
Cyronak, 2016, The Omega myth: what really drives lower calcification rates in an acidifying ocean, ICES J. Mar. Sci., 73, 558, 10.1093/icesjms/fsv075
d’Angelo, 2015, Local adaptation constrains the distribution potential of heat-tolerant Symbiodinium from the Persian/Arabian Gulf, ISME J., 2015, 1
Darwin, 1842, 214
De'ath, 2009, Declining coral calcification on the Great Barrier Reef, Science, 323, 116, 10.1126/science.1165283
DeCarlo, 2017, Dissepiments, density bands and signatures of thermal stress in Porites skeletons, Coral Reefs, 36, 749, 10.1007/s00338-017-1566-9
DeLong, 2015, Corals (Sclerochronology), 187
Denniston, 2008, Constraints on Late Miocene shallow marine seasonality for the Central Caribbean using oxygen isotopes and Sr/Ca ratios in a fossil coral, 47
Done, 2011, Corals: Environmental controls on growth, 281
Drake, 2020, How corals made rocks through the ages, Global Change Biol., 26, 31, 10.1111/gcb.14912
Druffel, 1997, Geochemistry of corals: Proxies of past ocean chemistry, ocean circulation, and climate, Proceed. Nat. Acad. Sci. USA, 94, 8354, 10.1073/pnas.94.16.8354
Dullo, 1984, Progressive diagenetic sequence of aragonite structures: Pleistocene coral reefs and their modern counterparts on the eastern Red Sea coast, Saudi Arabia, Palaeontographica Americana, 54
Elizalde-Rendon, 2010, Growth characteristics of the reef-building coral Porites astreoides under different environmental conditions in the Western Atlantic, Coral Reefs, 29, 607, 10.1007/s00338-010-0604-7
Enmar, 2000, Diagenesis in live corals from the Gulf of Aqaba. I. The effect on paleo-oceanography tracers, Geochim. Cosmochim. Acta, 64, 3123, 10.1016/S0016-7037(00)00417-8
Fabricius, 2011, Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations, Nat. Clim. Change, 1, 165, 10.1038/nclimate1122
Fantazzini, 2015, Gains and losses of coral skeletal porosity changes with ocean acidification, Nature Commun., 6, 7785, 10.1038/ncomms8785
Fedorov, 2013, Patterns and mechanisms of early Pliocene warmth, Nature, 496, 43, 10.1038/nature12003
Felis, 2004, Climate reconstructions from annually banded corals, 205
Felis, 1998, Vertical water mass mixing and plankton blooms recorded in skeletal stable carbon isotopes of a Red Sea coral, J. Geophys. Res., 103, 30731, 10.1029/98JC02711
Felis, 2003, Mean oxygen-isotope signatures in Porites spp. corals: inter-colony variability and correction for extension-rate effects, Coral Reefs, 22, 328, 10.1007/s00338-003-0324-3
Fine, 2007, Scleractinian coral species survive and recover from decalcification, Science, 315, 1811, 10.1126/science.1137094
Flügel, 2002, Triassic reef patterns, 391
Frankowiak, 2016, Photosymbiosis and the expansion of shallow-water corals, Science Advances, 2016, 1
Gattuso, 1998, Effect of calcium carbonate saturation of seawater on coral calcification, Global and Planetary Change, 18, 37, 10.1016/S0921-8181(98)00035-6
Gischler, 2009, Growth of Pleistocene massive corals in south Florida: low skeletal extension-rates and possible ENSO, decadal, and multi-decadal cyclicities, Coral Reefs, 28, 823, 10.1007/s00338-009-0537-1
Glynn, 1983, Extensive “bleaching” and death of reef corals on the Pacific coast of Panama. 10, 149–154, Environ. Conserv., 10, 149, 10.1017/S0376892900012248
Goreau, 1959, The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions, Biol. Bull., 116, 59, 10.2307/1539156
Gradstein, 2012, On the geologic time scale, Newsl. Stratigr., 45, 171, 10.1127/0078-0421/2012/0020
Griffiths, 2013, Evaluation of the effect of diagenetic cements on element/Ca ratios in aragonitic Early Miocene (~16 Ma) Caribbean corals: Implications for "deep-time" palaeoenvironmental reconstructions, Palaeogeogr. Palaeoclimatol. Palaeoecol., 369, 185, 10.1016/j.palaeo.2012.10.018
Guinotte, 2003, Future coral reef habitat marginality: Temporal and spatial effects of climate change in the Pacific basin, Coral Reefs, 22, 551, 10.1007/s00338-003-0331-4
Halley, 1999, Reconstructing the history of eastern and central Florida Bay using mollusk-shell isotope records, Estuaries, 22, 358, 10.2307/1353204
Hallock, 1986, Nutrient excess and the demise of coral reefs and carbonate platforms, Palaios, 1, 389, 10.2307/3514476
Harzhauser, 2014, Stromatolites in the Paratethys during the Middle Miocene climate transition as witness of the Badenian slinity crisis, Facies, 60, 429, 10.1007/s10347-013-0391-z
Heiss, 1994, Coral reefs in the Red Sea: Growth, production, and stable isotopes, Geomar Rep., 32, 1
Helmle, 2002, 365
Higuchi, 2014, Biotic control of skeletal growth by scleractinian corals in aragonite–calcite seas, PLoS ONE, 9, 10.1371/journal.pone.0091021
Hofmann, 2011, High-frequency dynamics of ocean pH: A multi-ecosystem comparison, PLoS ONE, 6, 10.1371/journal.pone.0028983
Hönisch, 2009, Atmospheric carbon dioxide concentration across the mid-Pleistocene transition, Science, 324, 1551, 10.1126/science.1171477
Hönisch, 2012, The geological record of ocean acidification, Science, 335, 1058, 10.1126/science.1208277
Howells, 2018, Species-Specific coral calcification Responses to the extreme environment of the Southern Persian Gulf, Front. Mar. Sci., 5
Hudson, 1976, Sclerochronology: a tool for interpreting past environments, Geology, 4, 361, 10.1130/0091-7613(1976)4<361:SATFIP>2.0.CO;2
James, 1983, Reef environment, 33, 345
James, 1992, Reefs and mounds, 323
Janiszewska, 2017, Aragonitic scleractinian corals in the Cretaceous calcitic sea, Geology, 45, 319, 10.1130/G38593.1
Johnson, 2006, Skeletal extension rates of Cenozoic Caribbean reef corals, Palaios, 21, 262, 10.2110/palo.2004.p04-52
Kiessling, 2011, On the potential for ocean acidification to be a general cause of ancient reef crises, Global Change Biol., 17, 56, 10.1111/j.1365-2486.2010.02204.x
Kiessling, 2002, 72, 775
Kitahara, 2010, A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data, PLoS ONE, 5, 10.1371/journal.pone.0011490
Klaus, 2017, Expanded Florida reef development during the mid-Pliocene warm period, Global Planet. Chang., 10.1016/j.gloplacha.2017.02.001
Kleypas, 1999, Geochemical consequences of increased atmospheric carbon dioxide on coral reefs, Science, 284, 118, 10.1126/science.284.5411.118
Kleypas, 1999, Environmental limits to coral reef development. Where do we draw the line?, Am. Zool., 39, 146, 10.1093/icb/39.1.146
Knutson, 1972, Coral chronometers: seasonal growth bands in reef corals, Science, 177, 270, 10.1126/science.177.4045.270
Kováč, 2017, The Central Paratethys palaeoceanography: a water circulation model based on microfossil proxies, climate, and changes of depositional environment, Acta geologica slovaca, 9, 75
Kump, 2009, Ocean acidification in deep time, Oceanography, 22, 10.5670/oceanog.2009.100
Langdon, 2000, Effect of calcium carbonate saturation on the calcification rate of an experimental coral reef, Global Biogeochemical Cycles, 14, 639, 10.1029/1999GB001195
Lear, 2015, Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry, Paleoceanography, 30, 1437, 10.1002/2015PA002833
Leder, 1996, The origin of variations in the isotopic record of scleractinian corals: 1 Oxygen, Geochimica et Cosmochim. Acta, 60, 2857, 10.1016/0016-7037(96)00118-4
LeGrande, 2006, Global gridded data set of the oxygen isotopic composition in seawater, Geophys. Res. Lett., 33, 10.1029/2006GL026011
Longman, 1980, Carbonate diagenetic textures from nearsurface diagenetic environments, American AAPG Bull., 64, 461
Lough, 2008, Coral calcification from skeletal records revisited, Mar. Ecol. Prog. Ser., 373, 257, 10.3354/meps07398
Lough, 2000, Environmental controls on growth of the massive coral Porites, J. Exp. Mar. Biol. Ecol., 245, 225, 10.1016/S0022-0981(99)00168-9
Lough, 2011, New insights from coral growth band studies in an era of rapid environmental change, Earth Sci. Rev., 108, 170, 10.1016/j.earscirev.2011.07.001
Lozouet, 2001, Un site exceptionnel du Miocène inférieur (Aquitanien): la `Carrière Vives´ (Meilhan, Landes, France). Bilan de la campagne de fouilles de juillet-aout 1991, Cossmannia, 8, 47
Mackenzie, 1997, Climatic variation in the early to middle Eocene using the stable oxygen isotopic composition of coral skeletons, Geol. Soc. Am. Abstr. Programs, 29
Manzello, 2014, Galapagos coral reef persistence after ENSO warming across an acidification gradient, Geophys. Res. Lett., 41, 9001, 10.1002/2014GL062501
McConnaughey, 1989, 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns, Geochim. Cosmochim. Acta, 53, 151, 10.1016/0016-7037(89)90282-2
McCulloch, 2017, Coral calcification in a changing World and the interactive dynamics of pH and DIC upregulation, Nat. Commun., 8, 15686, 10.1038/ncomms15686
McGregor, 2003, Diagenesis and geochemistry of Porites corals from Papua New Guinea: Implications for paleoclimate reconstruction, Geochimica et Cosmochim. Acta, 67, 2147, 10.1016/S0016-7037(02)01050-5
Mertz-Kraus, 2008, Tarbellastraea (Scleractinia): A new stable isotope archive for Late Miocene paleoenvironments in the Mediterranean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 257, 294, 10.1016/j.palaeo.2007.10.023
Mertz-Kraus, 2009, LA-ICP-MS analyses on coral growth increments reveal heavy winter rain in the Eastern Mediterranean at 9 Ma, Palaeogeogr. Palaeoclimatol. Palaeoecol., 273, 25, 10.1016/j.palaeo.2008.11.015
Mertz-Kraus, 2009, Late Miocene sea surface salinity variability in the Eastern Mediterranean inferred from coral aragonite δ18O (Crete, Greece), Chem. Geol., 262, 202, 10.1016/j.chemgeo.2009.01.010
Meulenkamp, 2000, Early Burdigalian (20.5 – 19 Ma), 179
Micheels, 2010, Analysis of heat transport mechanisms from a Late Miocene model experiment with a fully-coupled atmosphere-ocean general circulation model, Palaeogeogr. Palaeoclimatol. Palaeoecol
Mollica, 2018, Ocean acidification affects coral growth by reducing skeletal density, 6
Pälike, 2012, A Cenozoic record of the equatorial Pacific carbonate compensation depth, Nature, 488, 609, 10.1038/nature11360
Parize, 2008, Sedimentology and sequence stratigraphy of Aquitanian and Burdigalian stratotypes in the Bordeaux area (southwestern France), Compt. Rendus Geosci., 340, 390, 10.1016/j.crte.2008.03.004
Perrin, 2002, Tertiary: The emergence of modern reef ecosystems, 587
Perrin, 2012, Paleobiogeography of scleractinian reef corals: Changing patterns during the Oligocene–Miocene climatic transition in the Mediterranean, Earth Sci. Rev., 111, 1, 10.1016/j.earscirev.2011.12.007
Perrin, 2001, Ultrastructural controls of diagenetic patterns of scleractinian skeletons: evidence at the scale of colony lifetime, Bull. Tohoku Univ. Museum, 1, 210
Perrin, 2010, Latitudinal trends in Cenozoic reef patterns and their relationsship to climate, Int. Assoc. Sedimentol. Spec. Publ., 42, 17
Perrin, 2007, Earliest steps of diagenesis in living coral skeletons: evidence from ultrastructural pattern and Raman spectroscopy, J. Sed. Res., 77, 495, 10.2110/jsr.2007.051
Plaziat, 1992, Multikilometer-sized reefs built by foraminifera (Solenomeris) from the early Eocene of the Pyrenean domain (S. France, N. Spain): Palaeoecologic relations with coral reefs, Palaeogeogr. Palaeoclimatol. Palaeoecol., 96, 195, 10.1016/0031-0182(92)90103-C
Popov, 2004, Lithological-Paleogeographic maps of Paratethys, 10 Maps Late Eocene to Pliocene, Courier Forschungsinstitut Senckenberg (CFS), 250, 1
Quinn, 1996, Evaluation of sampling resolution in coral stable isotope records: A case study using records from New Caledonia and Tarawa, Paleocenanography, 11, 529, 10.1029/96PA01859
Raymo, 1994, The initiation of Northern Hemisphere glaciation, Ann. Rev. Earth Pl Sc., 22, 353, 10.1146/annurev.ea.22.050194.002033
Renema, 2016, Are coral reefs victims of their own success?, Science Advances, 2, 10.1126/sciadv.1500850
Reuter, 2005, Diagenesis of growth bands in fossil scleractinian corals: Identification and modes of preservation, Facies, 51, 155, 10.1007/s10347-005-0064-7
Riegl, 2009, Coral Reefs, 136
Ries, 2006, Scleractinian corals produce calcite, and grow more slowly, in artificial Cretaceous seawater, Geology, 34, 525, 10.1130/G22600.1
Ries, 2009, Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification, Geology, 37, 1131, 10.1130/G30210A.1
Romano, 2000, Molecular phylogenetic hypotheses for the evolution of scleractinian corals, Bull. Mar. Sci., 67, 1043
Romano, 1996, Evolution of scleractinian corals inferred from molecular systematics, Science, 271, 640, 10.1126/science.271.5249.640
Rosen, 2000, Algal symbiosis, and the collapse and recovery of reef communities: Lazarus corals across the K–T boundary, 164
Roulier, 1995, Seasonal- to decadal-scale climatic variability in southwest Florida during the middle Pliocene: Inferences from a coralline stable isotope record, Paleoceanography, 10, 429, 10.1029/95PA00374
Scheibner, 2008, Decline of coral reefs during late Paleocene to early Eocene global warming, eEarth, 3, 19, 10.5194/ee-3-19-2008
1986, 448
Scoffin, 1992, Environmental controls of Porites lutea, south Thailand, Coral Reefs, 11, 1, 10.1007/BF00291929
Seki, 2010, Alkenone and boron-based Pliocene pCO2 records, Earth Planet. Sci. Lett., 292, 201, 10.1016/j.epsl.2010.01.037
Shinn, 1966, Coral growth-rate, an environmental indicator, J. Paleontol., 40, 233
Sierro, 2003, Orbitally controlled oscillations in planktic communities and cyclic changes in western Mediterranean hydrography during the Messinian, Paleogeogr. Paleoclimatol. Paleoecol., 190, 289, 10.1016/S0031-0182(02)00611-9
Sosdian, 2018, Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy, Earth Planet. Sci. Lett., 498, 362, 10.1016/j.epsl.2018.06.017
Stanley, 2003, The evolution of modern corals and their early history, Earth Sci. Rev., 60, 195, 10.1016/S0012-8252(02)00104-6
Stanley, 2018, The evolution of the coral–algal symbiosis and coral bleaching in the geologic past, 9
Stanley, 1995, Evolution of the coral-zooxanthellae symbiosis during the triassic: A geochemical approach, Paleobiology, 21, 179, 10.1017/S0094837300013191
Stolarski, 2003, Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: A biocalcification proxy, Acta Palaeontol. Pol., 48, 497
Stolarski, 2016, A uniquie coral biomineralization pattern has resisted 40 million years of major ocean chemistry change, Sci. Rep., 6
Swart, 1983, Carbon and oxygen isotope fractionation in scleractinian corals: A review, Earth Sci. Rev., 19, 51, 10.1016/0012-8252(83)90076-4
Swart, 1996, The stable oxygen and carbon isotopic record from a coral growing in Florida Bay: a 160 year record of climatic and anthropogenic influence, Palaeogeogr. Palaeoclimatol. Palaeoecol., 123, 219, 10.1016/0031-0182(95)00078-X
Tambutté, 2015, Morphological plasticity of the coral skeleton under CO2-driven seawater acidification, Nature Commun, 6, 10.1038/ncomms8368
Tripati, 2011, A 20 million year record of planktic foraminiferal B/Ca ratios: Systematics and uncertainties in pCO2 reconstructions, Geochimica et Cosmochim. Acta, 75, 2582, 10.1016/j.gca.2011.01.018
Tudhope, 1996, Monsoon climate and Arabian sea coastal upwelling recorded in massive corals from southern Oman, Palaios, 11, 347, 10.2307/3515245
Veron, 2000
Veron, 2011, Coral: Biology, skeletal deposition, and reef-building, 275
Watanabe, 2011, Permanent El Nino during the Pliocene warm period not supported by coral evidence, Nature, 471, 209, 10.1038/nature09777
Weiss, 2017, El Niño–Southern Oscillation–like variability in a late Miocene Caribbean coral, Geology, 1
White, 2008, Response of Acropora to warm climates; lessons from the geological past, 7
Wilson, 1975, 471
Wilson, 1998, Implications of paucity of corals in the Paleogene of SE Asia: plate tectonics or Centre of Origin?, 165
Wood, 1999
Worum, 2007, Simulation and observation of annual density banding in skeletons of Montastrea (Cnidaria: Scleractinia) growing under thermal stress associated with ocean warming, Limnol. Oceanogr., 52, 2317, 10.4319/lo.2007.52.5.2317
Zachos, 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686, 10.1126/science.1059412