An assessment of reef coral calcification over the late Cenozoic

Earth-Science Reviews - Tập 204 - Trang 103154 - 2020
Thomas C. Brachert1, Thierry Corrège2, Markus Reuter1, Claudia Wrozyna1, Laurent Londeix2, Philipp Spreter1, Christine Perrin3
1Universität Leipzig, Institut für Geophysik und Geologie, Talstrasse 35, 04103 Leipzig, Germany
2Université de Bordeaux / UMR 'EPOC' CNRS 5805, Allée Geoffroy St-Hilaire, CS 50023, 33615 Pessac cedex, France
3Département Homme et Environnement, Muséum National d'Histoire Naturelle, HNHP UMR7194, Centre Européen de Recherche en Préhistoire, Avenue Léon-Jean Grégory, 66720 Tautavel, France

Tài liệu tham khảo

Al-Horani, 2016, Physiology of skeletogenesis in scleractinian corals, 192 Baker, 2004, Corals' adaptive response to climate change, Nature, 430, 741, 10.1038/430741a Barker, 2002, Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2, Science, 297, 833, 10.1126/science.1072815 Barnes, 1993, On the nature and causes of density banding in massive coral skeleton, J. Exp. Mar. Biol. Ecol., 167, 91, 10.1016/0022-0981(93)90186-R Beaufort, 2011, Sensitivity of coccolithophores to carbonate chemistry and ocean acidification, Nature, 476, 80, 10.1038/nature10295 Benson, 2019, Apparent timing of density banding in the Caribbean coral Siderastrea siderea suggests complex role of key physiological variables, Coral Reefs, 38, 165, 10.1007/s00338-018-01753-w Blanchon, 2011, Last interglacial and reef development, 621 Böcker, 2014, Interannual and seasonal climate variability recorded by reef corals, Plio/Pleistocene (Florida) and Mio/Pliocene (Dominican Republic), 141 Booker, 2019, Insights into sea surface temperatures from the Cayman Islands from corals over the last ~540 years, Sediment. Geol., 389, 218, 10.1016/j.sedgeo.2019.06.008 Brachert, 1996, Record of climatic change in neritic carbonates: Turnovers in biogenic associations and depositional modes (Upper Miocene, southern Spain), Geol. Rundsch., 85, 327, 10.1007/BF02422238 Brachert, 2006, Porites corals from Crete (Greece) open a window into Late Miocene (10 Ma) seasonal and interannual climate variability, Earth Planet. Sci. Lett., 245, 81, 10.1016/j.epsl.2006.03.005 Brachert, 2006, Coral growth bands: A new and easy to use paleothermometer in paleoenvironment analysis and paleoceanography (late Miocene, Greece), Paleoceanography, 21, PA4217, 10.1029/2006PA001288 Brachert, 2007, High salinity variability during the early Messinian revealed by stable isotope signatures from vermetid and Halimeda reefs of the Mediterranean region, Geologica Romana, 40, 1 Brachert, 2013, Density banding in corals: barcodes of past and current climate change, Coral Reefs, 32, 1013, 10.1007/s00338-013-1056-7 Brachert, 2016, Upwelligs mitigated Plio-/Pleistocene heat stress for reef corals on the Florida platform (USA), Biogeosciences, 13, 1469, 10.5194/bg-13-1469-2016 Brachert, 2016, Low Florida coral calcification rates in the Plio-Pleistocene, Biogeosciences, 13, 4513, 10.5194/bg-13-4513-2016 Bruch, 2011, Precipitation patterns in the Miocene of Central europe and the development of continentality, Palaeogeogr. Palaeoclimatol. Palaeoecol., 304, 202, 10.1016/j.palaeo.2010.10.002 Budd, 2000, Diversity and extinction in the Cenozoic history of Caribbean reefs, Coral Reefs, 19, 25, 10.1007/s003380050222 Cahuzac, 1996, Structural and faunal evolution of Chattian - Miocene reefs and corals in western France and the Northeastern Atlantic Ocean, 105 Cahuzac, 1997, Sr isotope record in the area of the Lower Miocene historical stratotypus of the Aquitaine Basin, 33 Cai, 2010, Alkalinity distribution in the western North Atlantic Ocean margins, J. Geophys. Res., 115, C08014, 10.1029/2009JC005482 Crook, 2013, Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification, Proceed. Acad. Nat. Sci., 110, 11044, 10.1073/pnas.1301589110 Cuevas Miranda, 2009, Coral growth rates from the Holocene Cañada Honda fossil reef, Southwestern Dominican Republic: Comparisons with modern counterparts in high sedimentation settings, Caribb. J. Sci., 45, 94, 10.18475/cjos.v45i1.a13 Cuif, 2005, The Environment Recording Unit in coral skeletons – a synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibres, Biogeosciences, 2, 61, 10.5194/bg-2-61-2005 Cyronak, 2016, The Omega myth: what really drives lower calcification rates in an acidifying ocean, ICES J. Mar. Sci., 73, 558, 10.1093/icesjms/fsv075 d’Angelo, 2015, Local adaptation constrains the distribution potential of heat-tolerant Symbiodinium from the Persian/Arabian Gulf, ISME J., 2015, 1 Darwin, 1842, 214 De'ath, 2009, Declining coral calcification on the Great Barrier Reef, Science, 323, 116, 10.1126/science.1165283 DeCarlo, 2017, Dissepiments, density bands and signatures of thermal stress in Porites skeletons, Coral Reefs, 36, 749, 10.1007/s00338-017-1566-9 DeLong, 2015, Corals (Sclerochronology), 187 Denniston, 2008, Constraints on Late Miocene shallow marine seasonality for the Central Caribbean using oxygen isotopes and Sr/Ca ratios in a fossil coral, 47 Done, 2011, Corals: Environmental controls on growth, 281 Drake, 2020, How corals made rocks through the ages, Global Change Biol., 26, 31, 10.1111/gcb.14912 Druffel, 1997, Geochemistry of corals: Proxies of past ocean chemistry, ocean circulation, and climate, Proceed. Nat. Acad. Sci. USA, 94, 8354, 10.1073/pnas.94.16.8354 Dullo, 1984, Progressive diagenetic sequence of aragonite structures: Pleistocene coral reefs and their modern counterparts on the eastern Red Sea coast, Saudi Arabia, Palaeontographica Americana, 54 Elizalde-Rendon, 2010, Growth characteristics of the reef-building coral Porites astreoides under different environmental conditions in the Western Atlantic, Coral Reefs, 29, 607, 10.1007/s00338-010-0604-7 Enmar, 2000, Diagenesis in live corals from the Gulf of Aqaba. I. The effect on paleo-oceanography tracers, Geochim. Cosmochim. Acta, 64, 3123, 10.1016/S0016-7037(00)00417-8 Fabricius, 2011, Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations, Nat. Clim. Change, 1, 165, 10.1038/nclimate1122 Fantazzini, 2015, Gains and losses of coral skeletal porosity changes with ocean acidification, Nature Commun., 6, 7785, 10.1038/ncomms8785 Fedorov, 2013, Patterns and mechanisms of early Pliocene warmth, Nature, 496, 43, 10.1038/nature12003 Felis, 2004, Climate reconstructions from annually banded corals, 205 Felis, 1998, Vertical water mass mixing and plankton blooms recorded in skeletal stable carbon isotopes of a Red Sea coral, J. Geophys. Res., 103, 30731, 10.1029/98JC02711 Felis, 2003, Mean oxygen-isotope signatures in Porites spp. corals: inter-colony variability and correction for extension-rate effects, Coral Reefs, 22, 328, 10.1007/s00338-003-0324-3 Fine, 2007, Scleractinian coral species survive and recover from decalcification, Science, 315, 1811, 10.1126/science.1137094 Flügel, 2002, Triassic reef patterns, 391 Frankowiak, 2016, Photosymbiosis and the expansion of shallow-water corals, Science Advances, 2016, 1 Gattuso, 1998, Effect of calcium carbonate saturation of seawater on coral calcification, Global and Planetary Change, 18, 37, 10.1016/S0921-8181(98)00035-6 Gischler, 2009, Growth of Pleistocene massive corals in south Florida: low skeletal extension-rates and possible ENSO, decadal, and multi-decadal cyclicities, Coral Reefs, 28, 823, 10.1007/s00338-009-0537-1 Glynn, 1983, Extensive “bleaching” and death of reef corals on the Pacific coast of Panama. 10, 149–154, Environ. Conserv., 10, 149, 10.1017/S0376892900012248 Goreau, 1959, The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions, Biol. Bull., 116, 59, 10.2307/1539156 Gradstein, 2012, On the geologic time scale, Newsl. Stratigr., 45, 171, 10.1127/0078-0421/2012/0020 Griffiths, 2013, Evaluation of the effect of diagenetic cements on element/Ca ratios in aragonitic Early Miocene (~16 Ma) Caribbean corals: Implications for "deep-time" palaeoenvironmental reconstructions, Palaeogeogr. Palaeoclimatol. Palaeoecol., 369, 185, 10.1016/j.palaeo.2012.10.018 Guinotte, 2003, Future coral reef habitat marginality: Temporal and spatial effects of climate change in the Pacific basin, Coral Reefs, 22, 551, 10.1007/s00338-003-0331-4 Halley, 1999, Reconstructing the history of eastern and central Florida Bay using mollusk-shell isotope records, Estuaries, 22, 358, 10.2307/1353204 Hallock, 1986, Nutrient excess and the demise of coral reefs and carbonate platforms, Palaios, 1, 389, 10.2307/3514476 Harzhauser, 2014, Stromatolites in the Paratethys during the Middle Miocene climate transition as witness of the Badenian slinity crisis, Facies, 60, 429, 10.1007/s10347-013-0391-z Heiss, 1994, Coral reefs in the Red Sea: Growth, production, and stable isotopes, Geomar Rep., 32, 1 Helmle, 2002, 365 Higuchi, 2014, Biotic control of skeletal growth by scleractinian corals in aragonite–calcite seas, PLoS ONE, 9, 10.1371/journal.pone.0091021 Hofmann, 2011, High-frequency dynamics of ocean pH: A multi-ecosystem comparison, PLoS ONE, 6, 10.1371/journal.pone.0028983 Hönisch, 2009, Atmospheric carbon dioxide concentration across the mid-Pleistocene transition, Science, 324, 1551, 10.1126/science.1171477 Hönisch, 2012, The geological record of ocean acidification, Science, 335, 1058, 10.1126/science.1208277 Howells, 2018, Species-Specific coral calcification Responses to the extreme environment of the Southern Persian Gulf, Front. Mar. Sci., 5 Hudson, 1976, Sclerochronology: a tool for interpreting past environments, Geology, 4, 361, 10.1130/0091-7613(1976)4<361:SATFIP>2.0.CO;2 James, 1983, Reef environment, 33, 345 James, 1992, Reefs and mounds, 323 Janiszewska, 2017, Aragonitic scleractinian corals in the Cretaceous calcitic sea, Geology, 45, 319, 10.1130/G38593.1 Johnson, 2006, Skeletal extension rates of Cenozoic Caribbean reef corals, Palaios, 21, 262, 10.2110/palo.2004.p04-52 Kiessling, 2011, On the potential for ocean acidification to be a general cause of ancient reef crises, Global Change Biol., 17, 56, 10.1111/j.1365-2486.2010.02204.x Kiessling, 2002, 72, 775 Kitahara, 2010, A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data, PLoS ONE, 5, 10.1371/journal.pone.0011490 Klaus, 2017, Expanded Florida reef development during the mid-Pliocene warm period, Global Planet. Chang., 10.1016/j.gloplacha.2017.02.001 Kleypas, 1999, Geochemical consequences of increased atmospheric carbon dioxide on coral reefs, Science, 284, 118, 10.1126/science.284.5411.118 Kleypas, 1999, Environmental limits to coral reef development. Where do we draw the line?, Am. Zool., 39, 146, 10.1093/icb/39.1.146 Knutson, 1972, Coral chronometers: seasonal growth bands in reef corals, Science, 177, 270, 10.1126/science.177.4045.270 Kováč, 2017, The Central Paratethys palaeoceanography: a water circulation model based on microfossil proxies, climate, and changes of depositional environment, Acta geologica slovaca, 9, 75 Kump, 2009, Ocean acidification in deep time, Oceanography, 22, 10.5670/oceanog.2009.100 Langdon, 2000, Effect of calcium carbonate saturation on the calcification rate of an experimental coral reef, Global Biogeochemical Cycles, 14, 639, 10.1029/1999GB001195 Lear, 2015, Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry, Paleoceanography, 30, 1437, 10.1002/2015PA002833 Leder, 1996, The origin of variations in the isotopic record of scleractinian corals: 1 Oxygen, Geochimica et Cosmochim. Acta, 60, 2857, 10.1016/0016-7037(96)00118-4 LeGrande, 2006, Global gridded data set of the oxygen isotopic composition in seawater, Geophys. Res. Lett., 33, 10.1029/2006GL026011 Longman, 1980, Carbonate diagenetic textures from nearsurface diagenetic environments, American AAPG Bull., 64, 461 Lough, 2008, Coral calcification from skeletal records revisited, Mar. Ecol. Prog. Ser., 373, 257, 10.3354/meps07398 Lough, 2000, Environmental controls on growth of the massive coral Porites, J. Exp. Mar. Biol. Ecol., 245, 225, 10.1016/S0022-0981(99)00168-9 Lough, 2011, New insights from coral growth band studies in an era of rapid environmental change, Earth Sci. Rev., 108, 170, 10.1016/j.earscirev.2011.07.001 Lozouet, 2001, Un site exceptionnel du Miocène inférieur (Aquitanien): la `Carrière Vives´ (Meilhan, Landes, France). Bilan de la campagne de fouilles de juillet-aout 1991, Cossmannia, 8, 47 Mackenzie, 1997, Climatic variation in the early to middle Eocene using the stable oxygen isotopic composition of coral skeletons, Geol. Soc. Am. Abstr. Programs, 29 Manzello, 2014, Galapagos coral reef persistence after ENSO warming across an acidification gradient, Geophys. Res. Lett., 41, 9001, 10.1002/2014GL062501 McConnaughey, 1989, 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns, Geochim. Cosmochim. Acta, 53, 151, 10.1016/0016-7037(89)90282-2 McCulloch, 2017, Coral calcification in a changing World and the interactive dynamics of pH and DIC upregulation, Nat. Commun., 8, 15686, 10.1038/ncomms15686 McGregor, 2003, Diagenesis and geochemistry of Porites corals from Papua New Guinea: Implications for paleoclimate reconstruction, Geochimica et Cosmochim. Acta, 67, 2147, 10.1016/S0016-7037(02)01050-5 Mertz-Kraus, 2008, Tarbellastraea (Scleractinia): A new stable isotope archive for Late Miocene paleoenvironments in the Mediterranean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 257, 294, 10.1016/j.palaeo.2007.10.023 Mertz-Kraus, 2009, LA-ICP-MS analyses on coral growth increments reveal heavy winter rain in the Eastern Mediterranean at 9 Ma, Palaeogeogr. Palaeoclimatol. Palaeoecol., 273, 25, 10.1016/j.palaeo.2008.11.015 Mertz-Kraus, 2009, Late Miocene sea surface salinity variability in the Eastern Mediterranean inferred from coral aragonite δ18O (Crete, Greece), Chem. Geol., 262, 202, 10.1016/j.chemgeo.2009.01.010 Meulenkamp, 2000, Early Burdigalian (20.5 – 19 Ma), 179 Micheels, 2010, Analysis of heat transport mechanisms from a Late Miocene model experiment with a fully-coupled atmosphere-ocean general circulation model, Palaeogeogr. Palaeoclimatol. Palaeoecol Mollica, 2018, Ocean acidification affects coral growth by reducing skeletal density, 6 Pälike, 2012, A Cenozoic record of the equatorial Pacific carbonate compensation depth, Nature, 488, 609, 10.1038/nature11360 Parize, 2008, Sedimentology and sequence stratigraphy of Aquitanian and Burdigalian stratotypes in the Bordeaux area (southwestern France), Compt. Rendus Geosci., 340, 390, 10.1016/j.crte.2008.03.004 Perrin, 2002, Tertiary: The emergence of modern reef ecosystems, 587 Perrin, 2012, Paleobiogeography of scleractinian reef corals: Changing patterns during the Oligocene–Miocene climatic transition in the Mediterranean, Earth Sci. Rev., 111, 1, 10.1016/j.earscirev.2011.12.007 Perrin, 2001, Ultrastructural controls of diagenetic patterns of scleractinian skeletons: evidence at the scale of colony lifetime, Bull. Tohoku Univ. Museum, 1, 210 Perrin, 2010, Latitudinal trends in Cenozoic reef patterns and their relationsship to climate, Int. Assoc. Sedimentol. Spec. Publ., 42, 17 Perrin, 2007, Earliest steps of diagenesis in living coral skeletons: evidence from ultrastructural pattern and Raman spectroscopy, J. Sed. Res., 77, 495, 10.2110/jsr.2007.051 Plaziat, 1992, Multikilometer-sized reefs built by foraminifera (Solenomeris) from the early Eocene of the Pyrenean domain (S. France, N. Spain): Palaeoecologic relations with coral reefs, Palaeogeogr. Palaeoclimatol. Palaeoecol., 96, 195, 10.1016/0031-0182(92)90103-C Popov, 2004, Lithological-Paleogeographic maps of Paratethys, 10 Maps Late Eocene to Pliocene, Courier Forschungsinstitut Senckenberg (CFS), 250, 1 Quinn, 1996, Evaluation of sampling resolution in coral stable isotope records: A case study using records from New Caledonia and Tarawa, Paleocenanography, 11, 529, 10.1029/96PA01859 Raymo, 1994, The initiation of Northern Hemisphere glaciation, Ann. Rev. Earth Pl Sc., 22, 353, 10.1146/annurev.ea.22.050194.002033 Renema, 2016, Are coral reefs victims of their own success?, Science Advances, 2, 10.1126/sciadv.1500850 Reuter, 2005, Diagenesis of growth bands in fossil scleractinian corals: Identification and modes of preservation, Facies, 51, 155, 10.1007/s10347-005-0064-7 Riegl, 2009, Coral Reefs, 136 Ries, 2006, Scleractinian corals produce calcite, and grow more slowly, in artificial Cretaceous seawater, Geology, 34, 525, 10.1130/G22600.1 Ries, 2009, Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification, Geology, 37, 1131, 10.1130/G30210A.1 Romano, 2000, Molecular phylogenetic hypotheses for the evolution of scleractinian corals, Bull. Mar. Sci., 67, 1043 Romano, 1996, Evolution of scleractinian corals inferred from molecular systematics, Science, 271, 640, 10.1126/science.271.5249.640 Rosen, 2000, Algal symbiosis, and the collapse and recovery of reef communities: Lazarus corals across the K–T boundary, 164 Roulier, 1995, Seasonal- to decadal-scale climatic variability in southwest Florida during the middle Pliocene: Inferences from a coralline stable isotope record, Paleoceanography, 10, 429, 10.1029/95PA00374 Scheibner, 2008, Decline of coral reefs during late Paleocene to early Eocene global warming, eEarth, 3, 19, 10.5194/ee-3-19-2008 1986, 448 Scoffin, 1992, Environmental controls of Porites lutea, south Thailand, Coral Reefs, 11, 1, 10.1007/BF00291929 Seki, 2010, Alkenone and boron-based Pliocene pCO2 records, Earth Planet. Sci. Lett., 292, 201, 10.1016/j.epsl.2010.01.037 Shinn, 1966, Coral growth-rate, an environmental indicator, J. Paleontol., 40, 233 Sierro, 2003, Orbitally controlled oscillations in planktic communities and cyclic changes in western Mediterranean hydrography during the Messinian, Paleogeogr. Paleoclimatol. Paleoecol., 190, 289, 10.1016/S0031-0182(02)00611-9 Sosdian, 2018, Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy, Earth Planet. Sci. Lett., 498, 362, 10.1016/j.epsl.2018.06.017 Stanley, 2003, The evolution of modern corals and their early history, Earth Sci. Rev., 60, 195, 10.1016/S0012-8252(02)00104-6 Stanley, 2018, The evolution of the coral–algal symbiosis and coral bleaching in the geologic past, 9 Stanley, 1995, Evolution of the coral-zooxanthellae symbiosis during the triassic: A geochemical approach, Paleobiology, 21, 179, 10.1017/S0094837300013191 Stolarski, 2003, Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: A biocalcification proxy, Acta Palaeontol. Pol., 48, 497 Stolarski, 2016, A uniquie coral biomineralization pattern has resisted 40 million years of major ocean chemistry change, Sci. Rep., 6 Swart, 1983, Carbon and oxygen isotope fractionation in scleractinian corals: A review, Earth Sci. Rev., 19, 51, 10.1016/0012-8252(83)90076-4 Swart, 1996, The stable oxygen and carbon isotopic record from a coral growing in Florida Bay: a 160 year record of climatic and anthropogenic influence, Palaeogeogr. Palaeoclimatol. Palaeoecol., 123, 219, 10.1016/0031-0182(95)00078-X Tambutté, 2015, Morphological plasticity of the coral skeleton under CO2-driven seawater acidification, Nature Commun, 6, 10.1038/ncomms8368 Tripati, 2011, A 20 million year record of planktic foraminiferal B/Ca ratios: Systematics and uncertainties in pCO2 reconstructions, Geochimica et Cosmochim. Acta, 75, 2582, 10.1016/j.gca.2011.01.018 Tudhope, 1996, Monsoon climate and Arabian sea coastal upwelling recorded in massive corals from southern Oman, Palaios, 11, 347, 10.2307/3515245 Veron, 2000 Veron, 2011, Coral: Biology, skeletal deposition, and reef-building, 275 Watanabe, 2011, Permanent El Nino during the Pliocene warm period not supported by coral evidence, Nature, 471, 209, 10.1038/nature09777 Weiss, 2017, El Niño–Southern Oscillation–like variability in a late Miocene Caribbean coral, Geology, 1 White, 2008, Response of Acropora to warm climates; lessons from the geological past, 7 Wilson, 1975, 471 Wilson, 1998, Implications of paucity of corals in the Paleogene of SE Asia: plate tectonics or Centre of Origin?, 165 Wood, 1999 Worum, 2007, Simulation and observation of annual density banding in skeletons of Montastrea (Cnidaria: Scleractinia) growing under thermal stress associated with ocean warming, Limnol. Oceanogr., 52, 2317, 10.4319/lo.2007.52.5.2317 Zachos, 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686, 10.1126/science.1059412