An approximation of Daubechies wavelet matrices by perfect reconstruction filter banks with rational coefficients

Springer Science and Business Media LLC - Tập 38 - Trang 147-158 - 2011
L. Ephremidze1, A. Gamkrelidze2, E. Lagvilava1
1A. Razmadze Mathematical Institute, Tbilisi, Georgia
2I. Javakhishvili State University, Tbilisi, Georgia

Tóm tắt

It is described how the coefficients of Daubechies wavelet matrices can be approximated by rational numbers in such a way that the perfect reconstruction property of the filter bank be preserved exactly.

Tài liệu tham khảo

Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988) Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelhia, PA (1992) Delsarte, P., Gelin, Y., Kamp, Y.: A simple approach to spectral factorization. IEEE Trans. Circuits Syst. 25, 943–946 (1978) Ephremidze, L., Janashia, G., Lagvilava, E.: On the factorization of unitary matrix-functions. Proc. A. Razmadze Math. Inst. 116, 101–106 (1998) Ephremidze, L., Janashia, G., Lagvilava, E.: A simple proof of matrix-valued Fejér–Riesz theorem. J. Fourier Anal. Appl. 15, 124–127 (2009). doi:10.1007/s00041-008-9051-z Ephremidze, L., Lagvilava, E.: On parameterization of compact wavelet matrices. Bull. Georgian Nat. Acad. Sci. 2(4), 23–27 (2008) Janashia, G., Lagvilava, E.: A method of approximate factorization of positive definite matrix functions. Stud. Math. 137(1), 93–100 (1999) Janashia, G., Lagvilava, E., Ephremidze, L.: A new method of matrix spectral factorization. IEEE Trans. Inf. Theory 57(4), 2318–2326 (2011). doi:10.1109/TIT.2011.2112233 Mallat, S.: A Wavelet Tour of Signal Processing. Academic, New York (1998) Resnikoff, H.L., Wells, R.O.: Wavelet Analysis. Springer (1998)