An approximate solution of a Fredholm integral equation of the first kind by the residual method

Pleiades Publishing Ltd - Tập 9 Số 1 - Trang 74-81 - 2016
В. П. Танана1, E. Yu. Vishnyakov1, А. И. Сидикова1
1South Ural State University, Chelyabinsk, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kabanikhin, S.I., Obratnye i nekorrektnye zadachi. Uchebnik dlya studentov vysshikh uchebnykh zavedenii (Inverse and Ill-Posed Problems: Textbook for University Students), Novosibirsk: Sibirskoe Nauchnoe Izd-vo, 2009.

Morozov, V.A., Regularization of Ill-Posed Problems and Choice of a Regularization Parameter, Zh. Vych. Mat. Mat. Fiz., 1966, vol. 6, no. 1, pp. 170–175.

Tikhonov, A.N., Regularization of Ill-Posed Problems, Dokl. AN SSSR, 1963, vol. 153, no. 1, pp. 49–52.

Morozov, V.A., The Residual Principle in Solving Operator Equations by the Method of Regularization, Zh. Vych. Mat.Mat. Fiz., 1968, vol. 8, no. 2, pp. 295–309.

Ivanov, V.K., Approximate Solution of an Operator Equations of the First Kind, Zh. Vych. Mat. Mat. Fiz., 1966, vol. 6, no. 6, pp. 1089–1094.

Goncharskii, A.V., Leonov, A.S., and Yagola, A.G., Finite-Difference Approximation of Linear Ill-Posed Problems, Zh. Vych. Mat. Mat. Fiz., 1974, vol. 14, no. 4, pp. 1022–1027.

Vasin, V.V. and Tanana, V.P., Necessary and Sufficient Conditions for Convergence of ProjectionMethods for Linear Unstable Problems, Dokl. AN SSSR, 1974, vol. 215, no. 5, pp. 1032–1034.

Tanana, V.P., Projection Methods and Finite-Difference Approximation of Linear Ill-Posed Problems, Sib. Mat. Zh., 1975, vol. 16, no. 6, pp. 1301–1307.

Vasin, V.V., Discrete Convergence and Finite-Dimensional Approximation of Regularizing Algorithms, Zh. Vych. Mat.Mat. Fiz., 1979, vol. 19, no. 1, pp. 11–21.

Tanana, V.P. and Sidikova, A.I., An Error Estimate of a Regularizing Algorithm Based on the Generalized Residual PrincipleWhen Solving Integral Equations, Vych. Met. Program., 2015, vol. 16, no. 1, pp. 1–9.

Tanana, V.P., On Optimality of Methods for Solving Nonlinear Unstable Problems, Dokl. AN SSSR, 1975, vol. 220, no. 5, pp. 1035–1037.

Tanana, V.P., On the Order-Optimality of the Projection Regularization Method in Solving Inverse Problems, Sib. Zh. Industr. Mat., 2004, vol. 7, no. 2, pp. 117–132.