An approach to the existence and uniqueness of fixed point results in $${\varvec{b}}$$ b -metric spaces via $${\varvec{s}}$$ s -simulation functions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aghajani, A., Abbas, M., Roshan, J.R.: Common fixed point of generalized weak contractive mappings in partially ordered $$b$$ b -metric spaces. Math. Slovaca 64(4), 941–960 (2014)
Argoubi, H., Samet, B., Vetro, C.: Nonlinear contractions involving simulation functions in a metric space with a partial order. J. Nonlinear Sci. Appl 8, 1082–1094 (2015)
Baillon, J.B., Bruck, R.E., Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houst. J. Math. 4, 1–9 (1978)
Bakhtin, I.A.: The contraction mapping principle in quasimetric spaces. Funct. Anal. Unianowsk Gos. Ped. Inst. 30, 26–37 (1989)
Browder, F.E., Petryshyn, W.V.: The solution by iteration of nonlinear functional equation in Banach spaces. Bull. Am. Math. Soc. 72, 571–576 (1966)
Boriceanu, M., Bota, M., Petrusel, A.: Mutivalued fractals in $$b$$ b -metric spaces. Cent. Eur. J. Math. 8(2), 367–377 (2010)
Bota, M., Molnar, A., Csaba, V.: On Ekelands variational principle in $$b$$ b -metric spaces. Fixed Point Theory 12, 21–28 (2011)
Czerwik, S.: Contraction mappings in $$b$$ b -metric spaces. Acta Math. Inf. Univ. Ostraviensis 1, 5–11 (1993)
Czerwik, S.: Nonlinear set-valued contraction mappings in $$b$$ b -metric spaces. Atti Semin. Mat. Fis. Univ. Modena 46, 263–276 (1998)
Khojasteh, F., Shukla, S., Radenovic, S.: A new approach to the study of fixed point theory for simulation functions. Filomat 29, 1189–1194 (2015)
Lopez de Hierro, A.F.R, Samet, B.: $$\varphi $$ φ -admissibility results via extended simulation functions. J. Fixed Point Theory Appl. (2016). doi: 10.1007/s11784-016-0385-x
Yamaod, O., Sintunavarat, W.: Fixed point theorems for $$(\alpha,\beta )-(\psi,\phi )$$ ( α , β ) - ( ψ , ϕ ) -contractive mapping in $$b$$ b -metric spaces with some numerical results and applications. J. Nonlinear Sci. Appl. 9, 22–33 (2016)