An approach to improving the retrieval accuracy of oceanic constituents in Case II waters

Tinglu Zhang1, Frank Fell2
1Ocean Remote Sensing Laboratory of Ministry of Education of China, Ocean Remote Sensing Institute, Ocean University of China, 266003, Qingdao, P.R.China
2Institut für Weltraumwissenschaften, Freie Universität Berlin, Carl-Heinrich-Becker-Weg 6-10, 12165, Berlin, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Babin, M., D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, et al, 2003. Variation in the light absorption coefficient of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res., 108: 3211–3230.

Bricaud, A., A. Morel, and L. Prieur, 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr., 26: 43–53.

Bukata, R.P., J.E. Bruton, J.H. Jerome, S.C. Jain, and H.H. Zwick, 1981. Optical water quality model of Lake Ontario 2. Determination of chlorophyll and suspended mineral concentrations of natural waters from submersible and low altitude remote sensors. Appl. Opt., 20: 1704–1714.

Doerffer, R., and J. Fischer, 1994. Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone colour scanner data with inverse modelling methods. J. Geophys. Res., 99: 7457–7466.

Fell, F., and J. Fischer, 2001. Numerical simulation of the light field in the atmosphere-ocean system using the Matrix-Operator method. J. Quant. Spectrosc. Radial. Transfer, 69; 351–388.

Garver, S. A., and D. A. Siegel, 1997. Inherent optical property inversion of ocean colour spectra and its biogeochemical interpretation: l.Time series from the Sargasso Sea. J. Geophys. Res., 102: 18607–18625.

Gross, L., S. Thiria, R. Frouin, and B.G. Mitchell, 2000. Artificial neural networks for modelling the transfer function between marine reflectance and phytoplankton pigment concentration. J. Geophys. Res., 105: 3483–3495.

IOCCG, 2000. Remote sensing of ocean colour in coastal, and other optically-complex, waters. Reports of the International Ocean-Colour Coordinating Group, No. 3. S. Sathyendranath, ed., IOCCG, Dartmouth, Canada., 140 pp.

Lee, Z.P., K.L. Carder, C.D. Mobley, R.G. Steward, J. S. Patch, et al., 1999. Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimisation. Appl. Opt., 38: 3831–3843.

Roesler, C.S., and M.J. Perry, 1995. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance. J. Geophys. Res., 100: 13279–13294.

Schiller, H., and R. Doerffer, 1999. Neural network for emulation of an inverse model-operational derivation of Case II water properties from MERIS data. Int. J. Remote Sens., 20: 1735–1746.

Shimwell, S.J., and M. Wernand, 1995. Ocean colour algorithm development. PMNS Report. Netherlands Institute for Sea Research, Netherlands, 25.

Werdell, P.J., S.W. Bailey, G.S. Fargion, C. Pietras, K. D. Knobelspiesse, et al., 2003. Unique data repository facilitates ocean color satellite validation. EOS Trans. AGU, 84: 38, 377.

Zhang, T., 2003. Retrieval of Oceanic Constituents with Artificial Neural Network Based on Radiative Transfer Simulations Techniques. PhD. thesis. Institut fuer Weltraumwissenschaften, Freie Universitaet Berlin, Germany.