An application of hierarchical Gaussian processes to the detection of anomalies in star light curves
Tài liệu tham khảo
Chandola, 2009, Anomaly detection: a survey, ACM Comput. Surv. (CSUR), 41, 15, 10.1145/1541880.1541882
Rebbapragada, 2008, Finding anomalous periodic time series, Mach. Learn., 74, 281, 10.1007/s10994-008-5093-3
Stetson, 1996, On the automatic determination of light-curve parameters for Cepheid variables, Publ. Astronom. Soc. Pac., 108, 851, 10.1086/133808
Udalski, 1997, Optical gravitational lensing experiment, OGLE-2--the second phase of the OGLE project
Yankov, 2008, Disk aware discord discovery: finding unusual time series in terabyte sized datasets, Knowl. Inf. Syst., 17, 241, 10.1007/s10115-008-0131-9
Sterken, 2005
Rasmussen, 2005
Roberts, 2012, Gaussian processes for time-series modelling, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci., 371
Hensman, 2013, Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters, BMC Bioinformat., 14, 252, 10.1186/1471-2105-14-252
Rakthanmanon, 2012, Searching and mining trillions of time series subsequences under dynamic time warping, 262
Malhotra, 2015, 89
Senin, 2014, Grammarviz 2.0: a tool for grammar-based pattern discovery in time series, 468
Ratsch, 2002, Constructing boosting algorithms from SVMs: an application to one-class classification, IEEE Trans. Pattern Anal. Mach. Intell., 24, 1184, 10.1109/TPAMI.2002.1033211
Aghabozorgi, 2015, Time-series clustering–a decade review, Inf. Syst., 53, 16, 10.1016/j.is.2015.04.007
Gupta, 2014, Outlier detection for temporal data: a survey, IEEE Trans. Knowl. Data Eng., 26, 2250, 10.1109/TKDE.2013.184
Domingos, 1999, The role of Occam’s razor in knowledge discovery, Data Mining Knowl. Discov., 3, 409, 10.1023/A:1009868929893
Myung, 1997, Applying Occam’s razor in modeling cognition: a Bayesian approach, Psychon. Bull. Rev., 4, 79, 10.3758/BF03210778
Rasmussen, 2001, Occam’s razor, 294
Bishop, 2006
Murphy, 2013
Roberts, 1999, Novelty detection using extreme value statistics, IEE Proc. Vis. Image Signal Process., 146, 124, 10.1049/ip-vis:19990428
Twomey, 2014, Automated detection of perturbed cardiac physiology during oral food allergen challenge in children, IEEE J. Biomed. Health Inform., 18, 1051, 10.1109/JBHI.2013.2290706
Mahadevan, 2010, Anomaly detection in crowded scenes, 1975
Akouemo, 2016, Probabilistic anomaly detection in natural gas time series data, Int. J. Forecast., 32, 948, 10.1016/j.ijforecast.2015.06.001
Xiang, 2008, Video behavior profiling for anomaly detection, IEEE Trans. Pattern Anal. Mach. Intell., 30, 893, 10.1109/TPAMI.2007.70731
Winn, 2015
Herbrich, 2007, Trueskill: a Bayesian skill rating system, 569
Flach, 2010, Novel tools to streamline the conference review process: experiences from SIGKDD’09, ACM SIGKDD Explor. Newsl., 11, 63, 10.1145/1809400.1809413
Stern, 2009, Matchbox: large scale online Bayesian recommendations, 111
D. Tran, A. Kucukelbir, A.B. Dieng, M. Rudolph, D. Liang, D.M. Blei, Edward: a library for probabilistic modeling, inference, and criticism, arXiv:1610.09787 (2016).
Patil, 2010, PyMC: Bayesian stochastic modelling in python, J. Stat. Softw., 35, 1, 10.18637/jss.v035.i04
Carpenter, 2017, Stan: a probabilistic programming language, J. Stat. Softw., 76, 10.18637/jss.v076.i01
Dai, 2018, MXFusion: a modular deep probabilistic programming library
Mascaro, 2014, Anomaly detection in vessel tracks using Bayesian networks, Int. J. Approx. Reason., 55, 84, 10.1016/j.ijar.2013.03.012
Ye, 2000, A Markov chain model of temporal behavior for anomaly detection, 166, 169
Darkins, 2013, Accelerating Bayesian hierarchical clustering of time series data with a randomised algorithm, PloS One, 8, e59795, 10.1371/journal.pone.0059795
E. Yu, P. Parekh, A Bayesian ensemble for unsupervised anomaly detection, arXiv:1610.07677 (2016).
Neal, 2000, Markov chain sampling methods for Dirichlet process mixture models, J. Comput. Graph. Stat., 9, 249
Van Gael, 2009, The infinite HMM for unsupervised pos tagging, 678
GPy: A Gaussian process framework in Python, since 2012, (http://github.com/SheffieldML/GPy).
Matthews, 2017, GPFlow: a Gaussian process library using tensorflow, J. Mach. Learn. Res., 18, 1299
S. Reece, R. Garnett, M. Osborne, S. Roberts, Anomaly detection and removal using non-stationary Gaussian processes, arXiv:1507.00566 (2015).
W. Herlands, E. McFowland III, A.G. Wilson, D.B. Neill, Gaussian process subset scanning for anomalous pattern detection in non-iid data, arXiv:1804.01466 (2018).
Chen, 2018, Anomaly detection in star light curves using hierarchical Gaussian processes, 615
Duvenaud, 2014
Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, G. Batista, The UCR time series classification archive, 2015, www.cs.ucr.edu/~eamonn/time_series_data/.
Mallat, 1999
Pelleg, 2000, X-means: extending k-means with efficient estimation of the number of clusters., 1, 727
Weakliem, 1999, A critique of the Bayesian information criterion for model selection, Sociol. Methods Res., 27, 359, 10.1177/0049124199027003002
Quiñonero-Candela, 2005, A unifying view of sparse approximate Gaussian process regression, J. Mach. Learn. Res., 6, 1939
Snelson, 2006, Sparse Gaussian processes using pseudo-inputs, 1257