An application of Rieger-Nishimura formulas to the intuitionistic modal logics

Studia Logica - Tập 44 Số 1 - Trang 79-85 - 1985
Dimiter Vakarelov1
1Institute of Mathematics and Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. V. Kuznecov and V. Ger?iu, Superintuitionistic Logics and Finite Approximability, Doklady Akademii Nauk SSSR 195 (1970)

D. Makinson, Some embedding theorems for modal logics, Notre Dame Journal of Formal Logics, 12 (1971), pp. 252?254.

I. Nishimura, On formulas of one variable in intuitionistic prepositional calculus, The Journal of Symbolic Logic, 25 (1960), pp. 327?331.

H. Rasiowa and K. Sikorski, The Mathematics of Metamathematics, Warsaw 1963.

L. Rieger, On lattice theory of Brouwerian propositional logic, Acta Facultatis Rerum Naturalium Universitatis Carolinae 189 (1949), pp. 1?40.

A. S. Troelstra, On intermediate propositional logics, Indagationes Mathematicae, 27 (1965), pp. 141?152.

V. Tselkov, Intuitionistic modal logics contradicting the Rieger-Nishimura logics, in Mathematics and Education in Mathematics, 1983, Proceedings of the 12 spring conference of the Union of Bulgarian Mathematicians, Sunny Beach, April 6?9.

D. Vakarelov, Intuitionistic modal logics incompatible with the law of the excluded middle, Studia Logica, XL, 2 (1981), pp. 103?111.

A. Wro?ski, On cardinality of matrices strongly adequate for the intuitionistic propositional logic, Reports on Mathematical Logic, 3 (1974), pp. 67?72.

A. Wro?ski and J. Zygmunt, Remarks on the free pseudo-Boolean algebra with one-element free-generating set, Reports on Mathematical Logic, 2 (1974), pp. 77?81.