An anomaly detection method based on Lasso

Springer Science and Business Media LLC - Tập 22 Số S3 - Trang 5407-5419 - 2019
Shanxiong Chen1, Maoling Peng2, Hao Xiong1, Sheng Wu1
1College of Computer and Information Science, Southwest University, Chongqing, China
2Chongqing City Management Vocational College, Chongqing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

V, C., A, B., V, K.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

Huang, J., Kalbarczyk, Z., Nicol, D.M.: Knowledge Discovery from Big Data for Intrusion Detection Using LDA. In: 2014 IEEE International Congress on Big Data (BigData Congress), pp. 760–761 (2014)

Li-ming, Z., Peng, Z., Wei-hong, Z., et al.: Anomaly detection in backbone networks using filter-ary-sketch. J. Commun. 32(12), 151–160 (2011)

M, X., S, H., Tian, B., et al.: Anomaly detection in wireless sensor networks: a survey. J. Netw. Comput. Appl. 34(4), 1302–1325 (2011)

Ye-Kui, Q., Ming, C., Li-Xin, Y., et al.: Network-wide anomaly detection method based on multiscale principal component analysis. J. Softw. 23(2), 361–377 (2012)

LI-Ming, Z., Peng, Z., Yan, J., et al.: How to extract and train classifier in traffic anomaly detection system. Chin. J. Comput. 35(4), 719–730 (2012)

Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.A.: Geometric framework for unsupervised anomaly detection. Adv. Inf. Sec. 6, 77–101 (2002)

C, K., G, V., W, R.: A multi-model approach to the detection of web-based attacks. Comput. Netw. 48(5), 717–738 (2005)

J, S.S., F, A., Eskin, E., et al.: Aapplications of data mining in computer security. J. Comput. Sec. 13(4), 659–693 (2005)

R, P., Ariu, D., Fogla, P., et al.: McPAD: a multiple classifier system for accurate payload-based anomaly detection. Comput. Netw. 53(6), 864–881 (2009)

Schölkopf, B., Platt, J.C., Shawe-Taylor, J., et al.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

J, P., D, K., Kim, J., et al.: SVDD-based pattern denoising. Neural Comput. 19(7), 1919–1938 (2007)

Tsang, C.H., Kwong, S., Wang, Hanli: Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection. Pattern Recognit. Lett. 40(9), 2373–2391 (2007)

Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)

Burbeck, K.: Current research and use of anomaly detection. In: Proceedings of the Fourteenth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 138–138 (2005)

Markou, M., Singh, S.: Novelty detection: a review—part 1: statistical approaches. Signal Process. 83(12), 2481–2497 (2003)

Bolton, P.: Banking in emerging markets. J. Financ. Intermed. 11, 11362–11365 (2002)

Tax, D.M.J.: One-Class Classification: Concept-Learning in the Absence of Counter-Examples. Delft University of Technology, Delft (2001)

Gupta, M., Sharma, A.B., Chen, H.: Context-aware time series anomaly detection for complex systems. In: Workshop Notes, vol. 14 (2013)

Feng, A., Chen, S.: Study on one-class classifiers based on Kernel method. J. NanJing Normal Univ. 8(4), 1–5 (2008)

Meinshausen, N., Yu, B.: Lasso-type recovery of sparse representations for high-dimensional data. Ann. Stat. 37(1), 246–270 (2009)

Bickel, P.J., Ritov, Y.A., Tsybakov, A.B.: Simultaneous analysis of Lasso and Dantzig selector. Ann. Stat. 37(4), 1705–1732 (2009)

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least Angle regression. Ann. Stat. 32(2), 407–499 (2004)

Li, F., Lu, Y.-Q., Li, G.: Variable selection of the adaptive LASSO of part the linear model. Chin. J. Appl. Probab. Stat. 28(6), 614–624 (2012)

Zhang, H.H., Lu, W.: Adaptive Lasso for Cox’s proportional hazards model. Biometrika. 94(3), 691–703 (2006)

L, M., VDG, S., P, B.: The group lasso for logistic regression. J. R. Stat. Soc. 70(1), 53–71 (2008)

Fu, S.: Hierarchical Bayesian LASSO for a negative binomial regression. J. Stat. Comput. Simul. 86(11), 2182–2203 (2016)

Lu, G., Zou, J., Wang, Y.: L1-norm and maximum margin criterion based discriminant locality preserving projections via trace Lasso. Pattern Recognit. Lett. 55, 207–214 (2016)

Fosson, S., Matamoros, J., Anton-Haro, C., Magli, E.: Distributed recovery of jointly sparse signals under communication constraints. IEEE Trans. Signal Process. 64(13), 3470–3482 (2016)