An anomaly detection method based on Lasso
Tóm tắt
Từ khóa
Tài liệu tham khảo
V, C., A, B., V, K.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)
Huang, J., Kalbarczyk, Z., Nicol, D.M.: Knowledge Discovery from Big Data for Intrusion Detection Using LDA. In: 2014 IEEE International Congress on Big Data (BigData Congress), pp. 760–761 (2014)
Li-ming, Z., Peng, Z., Wei-hong, Z., et al.: Anomaly detection in backbone networks using filter-ary-sketch. J. Commun. 32(12), 151–160 (2011)
M, X., S, H., Tian, B., et al.: Anomaly detection in wireless sensor networks: a survey. J. Netw. Comput. Appl. 34(4), 1302–1325 (2011)
Ye-Kui, Q., Ming, C., Li-Xin, Y., et al.: Network-wide anomaly detection method based on multiscale principal component analysis. J. Softw. 23(2), 361–377 (2012)
LI-Ming, Z., Peng, Z., Yan, J., et al.: How to extract and train classifier in traffic anomaly detection system. Chin. J. Comput. 35(4), 719–730 (2012)
Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.A.: Geometric framework for unsupervised anomaly detection. Adv. Inf. Sec. 6, 77–101 (2002)
C, K., G, V., W, R.: A multi-model approach to the detection of web-based attacks. Comput. Netw. 48(5), 717–738 (2005)
J, S.S., F, A., Eskin, E., et al.: Aapplications of data mining in computer security. J. Comput. Sec. 13(4), 659–693 (2005)
R, P., Ariu, D., Fogla, P., et al.: McPAD: a multiple classifier system for accurate payload-based anomaly detection. Comput. Netw. 53(6), 864–881 (2009)
Schölkopf, B., Platt, J.C., Shawe-Taylor, J., et al.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)
Tsang, C.H., Kwong, S., Wang, Hanli: Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection. Pattern Recognit. Lett. 40(9), 2373–2391 (2007)
Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)
Burbeck, K.: Current research and use of anomaly detection. In: Proceedings of the Fourteenth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 138–138 (2005)
Markou, M., Singh, S.: Novelty detection: a review—part 1: statistical approaches. Signal Process. 83(12), 2481–2497 (2003)
Tax, D.M.J.: One-Class Classification: Concept-Learning in the Absence of Counter-Examples. Delft University of Technology, Delft (2001)
Gupta, M., Sharma, A.B., Chen, H.: Context-aware time series anomaly detection for complex systems. In: Workshop Notes, vol. 14 (2013)
Feng, A., Chen, S.: Study on one-class classifiers based on Kernel method. J. NanJing Normal Univ. 8(4), 1–5 (2008)
Meinshausen, N., Yu, B.: Lasso-type recovery of sparse representations for high-dimensional data. Ann. Stat. 37(1), 246–270 (2009)
Bickel, P.J., Ritov, Y.A., Tsybakov, A.B.: Simultaneous analysis of Lasso and Dantzig selector. Ann. Stat. 37(4), 1705–1732 (2009)
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least Angle regression. Ann. Stat. 32(2), 407–499 (2004)
Li, F., Lu, Y.-Q., Li, G.: Variable selection of the adaptive LASSO of part the linear model. Chin. J. Appl. Probab. Stat. 28(6), 614–624 (2012)
Zhang, H.H., Lu, W.: Adaptive Lasso for Cox’s proportional hazards model. Biometrika. 94(3), 691–703 (2006)
L, M., VDG, S., P, B.: The group lasso for logistic regression. J. R. Stat. Soc. 70(1), 53–71 (2008)
Fu, S.: Hierarchical Bayesian LASSO for a negative binomial regression. J. Stat. Comput. Simul. 86(11), 2182–2203 (2016)
Lu, G., Zou, J., Wang, Y.: L1-norm and maximum margin criterion based discriminant locality preserving projections via trace Lasso. Pattern Recognit. Lett. 55, 207–214 (2016)