An anisotropic elastoplastic model based on an isotropic formulation

Engineering Computations - Tập 12 Số 3 - Trang 245-262 - 1995
Sergio Oller1, Salvador Botello2, Juan Carlos Miquel3, Eugenio Oñate3
1Universitat Politècnica deCatalunya, E.T.S. Ingenieros de Caminos, Canales y Puertos, Gran CapitanS/N, 08034 Barcelona, Spain
2Universitat Politècnica de Catalunya, E.T.S.Ingenieros de Caminos, Canales y Puertos,, Gran Capitan S/N, 08034Barcelona, Spain
3UniversitatPolitècnica de Catalunya, E.T.S. Ingenieros de Caminos, Canales yPuertos, Gran Capitan S/N, 08034 Barcelona,Spain

Tóm tắt

This paper shows a generalization of the classic isotropic plasticity theory to be applied to orthotropic or anisotropic materials. This approach assumes the existence of a real anisotropic space, and other fictitious isotropic space where a mapped fictitious problem is solved. Both spaces are related by means of a linear transformation using a fourth order transformation tensor that contains all the information concerning the real anisotropic material. The paper describes the basis of the spaces transformation proposed and the expressions of the resulting secant and tangent constitutive equations. Also details of the numerical integration of the constitutive equation are provided. Examples of application showing the good performance of the model for analysis of orthotropic materials and fibre‐reinforced composites are given.

Từ khóa


Tài liệu tham khảo

10.1122/1.549631

Betten J., 1983, Appl., 2, 13

10.1016/0749-6419(88)90003-4

Crisfield M. A., 1991, Non-linear Finite Element Analysis of Solids and Structures

Feenstra P. H., 1989, Proc. 2nd Int

Green A., 1964, Arch. Rational Mech. Anal., 18, 19

Hill R., 1971, The Mathematical Theory of Plasticity

Kothari N. C., 1984, Amsterdam, 7, 85

Lubliner J., 1990, Plasticity Theory

10.1016/0020-7683(89)90050-4

Malvern L., 1969, Introduction to the Mechanics of Continuous Medium

Oliver J., 1990, Austria, 94, 957

10.1002/nme.1620230303

Perić D., 1992, Proc. 3rd. Int. Conf. Comput. Plasticity, Part 1, 77-102 (Eds. D. Owen, E. Oñate and E. Hinton)

Tsai S., 1966, H. Halpin and N. Pagano)

Tsai S., 1987, Diseño y análisis de materiales compuestos

Vinson J., 1986, The Behaviour of Structures Composed of Composite Materials

Zienkiewicz O.C., 1989, The Finite Element Method-Basic Formulation and Linear Problem, 1

Oiler S., Ninth Int. Conf. Composite Mat. Madrid (1993)

Oiler S., 2nd US Nat. Congr. Comput. Mech. Washington DC (1993)