An anchor-based spectral clustering method
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arthur D, Vassilvitskii S, 2007. K-means++: the advantages of careful seeding. 18th Annual ACM-SIAM Symp on Discrete Algorithms, p.1027–1035. https://doi.org/10.1145/1283383.1283494
Boutsidis C, Gittens A, Kambadur P, 2015. Spectral clustering via the power method—provably. 32nd Int Conf on Machine Learning, p.40–48.
Chang XJ, Nie FP, Ma ZG, et al., 2015. A convex formulation for spectral shrunk clustering. 29th AAAI Conf on Artificial Intelligence, p.2532–2538.
Chen WY, Song YQ, Bai HJ, et al., 2011. Parallel spectral clustering in distributed systems. IEEE Trans Patt Anal Mach Intell, 33(3):568–586. https://doi.org/10.1109/TPAMI.2010.88
Chen XL, Cai D, 2011. Large scale spectral clustering with landmark-based representation. 25th AAAI Conf on Artificial Intelligence, p.313–318.
Davies DL, Bouldin DW, 1979. A cluster separation measure. IEEE Trans Patt Anal Mach Intell, 1(2):224–227. https://doi.org/10.1109/TPAMI.1979.4766909
Delalleau O, Bengio Y, Le Roux N, 2005. Efficient nonparametric function induction in semi-supervised learning. 10th Int Workshop on Artificial Intelligence and Statistics, p.96–103.
Demšar J, 2006. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res, 7:1–30.
Fowlkes C, Belongie S, Chung F, et al., 2004. Spectral grouping using the Nyström method. IEEE Trans Patt Anal Mach Intell, 26(2):214–225. https://doi.org/10.1109/TPAMI.2004.1262185
Jia HJ, Ding SF, Xu XZ, et al., 2014. The latest research progress on spectral clustering. Neur Comput Appl, 24(7-8):1477–1486. https://doi.org/10.1007/s00521-013-1439-2
Li HZ, Hu XG, Lin YJ, et al., 2016. A social tag clustering method based on common co-occurrence group similarity. Front Inform Technol Electron Eng, 17(2):122–134. https://doi.org/10.1631/FITEE.1500187
Li JY, Xia YJ, Shan ZY, et al., 2015. Scalable constrained spectral clustering. IEEE Trans Knowl Data Eng, 27(2):589–593. https://doi.org/10.1109/TKDE.2014.2356471
Lin F, Cohen WW, 2010. Power iteration clustering. 27th Int Conf on Machine Learning, p.655–662.
Liu JL, Wang C, Danilevsky M, et al., 2013. Large-scale spectral clustering on graphs. 23rd Int Joint Conf on Artificial Intelligence, p.1486–1492.
Liu W, He JF, Chang SF, 2010. Large graph construction for scalable semi-supervised learning. 27th Int Conf on Machine Learning, p.679–686.
Luo MN, Nie FP, Chang XJ, et al., 2017. Adaptive unsupervised feature selection with structure regularization. IEEE Trans Neur Netw Learn Syst, 29(4):944–956. https://doi.org/10.1109/TNNLS.2017.2650978
Mall R, Langone R, Suykens JAK, 2013a. FURS: fast and unique representative subset selection retaining large-scale community structure. Soc Netw Anal Min, 3(4):1075–1095. https://doi.org/10.1007/s13278-013-0144-6
Mall R, Langone R, Suykens JAK, 2013b. Kernel spectral clustering for big data networks. Entropy, 15(5):1567–1586. https://doi.org/10.3390/e15051567
Mall R, Jumutc V, Langone R, et al., 2014. Representative subsets for big data learning using K-NN graphs. IEEE Int Conf on Big Data, p.37–42. https://doi.org/10.1109/BigData.2014.7004210
Ng AY, Jordan MI, Weiss Y, et al., 2002. On spectral clustering: analysis and an algorithm. Advances in Neural Information Processing Systems, p.849–856.
Shi JB, Malik J, 2000. Normalized cuts and image segmentation. IEEE Trans Patt Anal Mach Intell, 22(8):888–905. https://doi.org/10.1109/34.868688
Song YQ, Chen WY, Bai HJ, et al., 2008. Parallel spectral clustering. In: Daelemans W, Goethals B, Morik K (Eds.), Machine Learning and Knowledge Discovery in Databases. Springer Berlin Heidelberg, p.374–389. https://doi.org/10.1007/978-3-540-87481-2_25
Tian F, Gao B, Cui Q, et al., 2014. Learning deep representations for graph clustering. 28th AAAI Conf on Artificial Intelligence, p.1293–1299.
von Luxburg U, 2007. A tutorial on spectral clustering. Stat Comput, 17(4):395–416. https://doi.org/10.1007/s11222-007-9033-z
Wang L, Leckie C, Ramamohanarao K, et al., 2009. Approximate spectral clustering. In: Theeramunkong T, Kijsirikul B, Cercone N, et al. (Eds.), Advances in Knowledge Discovery and Data Mining. Springer Berlin Heidelberg, p.134–146. https://doi.org/10.1007/978-3-642-01307-2_15
Xia RK, Pan Y, Du L, et al., 2014. Robust multi-view spectral clustering via low-rank and sparse decomposition. 28th AAAI Conf on Artificial Intelligence, p.2149–2155.
Xiang T, Gong SG, 2008. Spectral clustering with eigenvector selection. Patt Recog, 41(3):1012–1029. https://doi.org/10.1016/j.patcog.2007.07.023
Xiao P, Li ZY, Guo S, et al., 2016. A K self-adaptive SDN controller placement for wide area networks. Front Inform Technol Electron Eng, 17(7):620–633. https://doi.org/10.1631/FITEE.1500350
Yan DH, Huang L, Jordan MI, 2009. Fast approximate spectral clustering. 15th Int Conf on Knowledge Discovery and Data Mining, p.907–916. https://doi.org/10.1145/1557019.1557118
Yang Y, Xu D, Nie FP, et al., 2010. Image clustering using local discriminant models and global integration. IEEE Trans Image Process, 19(10):2761–2773. https://doi.org/10.1109/TIP.2010.2049235
Yang Y, Shen HT, Nie FP, et al., 2011. Nonnegative spectral clustering with discriminative regularization. 25th AAAI Conf on Artificial Intelligence, p.555–560.
Yang Y, Nie F, Xu D, et al., 2012. A multimedia retrieval framework based on semisupervised ranking and relevance feedback. IEEE Trans Patt Anal Mach Intell, 34(4):723–742. https://doi.org/10.1109/TPAMI.2011.170
Zhang XC, Zong LL, You QZ, et al., 2016. Sampling for Nystrom extension-based spectral clustering: incremental perspective and novel analysis. ACM Trans Knowl Discov Data, 11(1):1–25. https://doi.org/10.1145/2934693
Zhu XJ, Lafferty J, 2005. Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning. 22nd Int Conf on Machine Learning, p.1052–1059. https://doi.org/10.1145/1102351.1102484