An analytic representation of quantum field theory

Springer Science and Business Media LLC - Tập 12 - Trang 253-268 - 1969
D. K. Saraswati1,2, J. G. Valatin1
1Department of Physics, Queen Mary College, University of London, UK
2Physics Department, Notre Dame University, Nelson

Tóm tắt

The connection between a space of quadratically integrable functions of real variablesq and a Hilbert space of analytic functions of complex variablesz established byBargmann is used to introduce quantised field operators for which the δ-functions of the commutation relations inq-space are replaced by analytic kernel functions inz-space, and a reference to distributions can be avoided.Bargmann's representation is first somewhat modified, so that the derivative terms in the field equations retain their form in the new representation. Local interaction terms inq-space obtain a non-local appearance inz-space. The transition to a 4-dimensional formulation inz-space has to resort to a Euclidean metric. The equations can be derived directly by starting from an action integral inz-space, and applying a variational calculus in which variations are restricted to analytic functions. Explicit analytic expressions are given for free field propagators.

Tài liệu tham khảo

Bargmann, V.: Commun. Pure Appl. Math.14 187, (1961);20, 1 (1967). —— Proc. Natl. Acad. Sci. U.S.48 199 (1962). Glauber, R. J.: Phys. Rev.131 2766 (1963); Quantum optics and electronics. New York: Gordon and Breach 1965. Klauder, J. R.: J. Math. Phys.4 1055, 1058 (1963);5, 177 (1964). Klauder, J. R., andJ. McKenna: J. Math. Phys.5 878 (1964);6, 68 (1965). Schwerber, S. S.: J. Math. Phys.3 831 (1962). Schwinger, J.: Phys. Rev.115 721 (1959). Nakano, T.: Progr. Theor. Phys.21 241 (1959). Symanzik, K.: In: Analysis in function space, Ed.W. T. Martin andI. Segal, p. 197. Cambridge, Mass.: MIT Press 1964; J. Math. Phys.7, 510 (1966). v. Neumann, J.: Mathematische Grundlagen der Quantenmechanik, S. 123. Berlin: Springer 1932. Symanzik, K.: Funktionale in der Feldtheorie, Thesis, Göttingen (1954); J. Math. Phys.1, 249 (1960). Valatin, J. G.: Proc. Roy. Soc. (A),229 221 (1955). Saraswati, D. K.: Ph. D. Thesis, University of London (1968), (unpublished). Fock, V.: Phys. Z. Sowjet.12 404 (1937). Schwinger, J.: Phys. Rev.82 664 (1951). Valatin, J. G.: Proc. Roy. Soc. (A)222 93 (1954). Courant, R., andD. Hilbert: Methods of mathematical physics. Vol. I, p. 351. New York: Interscience Publishers 1953.