An analysis of the results of the inductive formation of diagnostic medical knowledge databases

A. S. Kleshchev1, M. V. Petryaeva1, S. V. Smagin2, M. Yu. Chernyakhovskaya1
1Intelligent Systems Laboratory, Institute of Automation and Control Processes, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia
2Department of Applied Mathematics, Mechanics, Control and Software, School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russky Island, Russia

Tóm tắt

This paper proposes a problem-oriented method for the objective formation of easily interpretable knowledge databases for intelligent systems. We describe the InForMedKB software complex, which is designed for the inductive formation of medical diagnostics knowledge databases; it was used to perform the proposed method. Expert analysis of the results of using the developed software complex, viz., the inductively formed Acute Appendicitis database of medical diagnostic knowledge for a mathematical dependence model with parameters, which is near real-life ontology of medical diagnostics, is given.

Tài liệu tham khảo

Gavrilova, T.A. and Khoroshevskii, V.F., Bazy znanii intellektual’nykh system (Knowledge Databases of Intelligent Systems), St. Petersburg: Piter, 2000. Protege—a Free Ontology Editor and Knowledge-Base Framework. http://protege.stanford.edu OSTIS—Open Semantic Technology for Intelligent Systems. http://www.ostis.net/ostis.html Kleshchev, A.S. and Orlov, V.A., Computer knowledge banks. A universal approach to solving the problem of data editing, Inf. Tekhnol., 2006, no. 5, pp. 25–31. Kleshchev, A.S. and Artem’eva, I.L., Unenriched logical dependence systems, Nauchn.-Tekhn. Inform., Ser. 2, 2000, no. 7, pp. 18–28; no. 8, pp. 8–18. Kleshchev, A.S. and Artem’eva, I.L., Mathematical models of domain ontologies, Nauchn.-Tekhn. Inform., Ser. 2, 2001, no. 2, pp. 20–27; no. 3, pp. 19–29. Vagin, V.N., Golovina, E.Yu., Zagoryanskaya, A.A., and Fomina, M.V., Dostovernyi i pravdopodobnyi vyvod v intellektual’nykh sistemakh (Reliable and Credible Output in Intelligent Systems), Vagin, V.N and Pospelov, D.A, Eds., Moscow: Fizmatlit, 2004. Zagoruiko, N.G., Kognitivnyi analiz dannykh (Cognitive Data Analysis), Novosibirsk: Akademicheskoe Izd. GEO, 2012. Michie, D., Expert systems, Comput. J., 1980, vol. 23, no. 4, pp. 369–376. Kleshchev, A.S., Tasks of inductive formation of knowledge in terms of primitive domain ontologies, Nauchn.-Tekhn. Inform., Ser. 2, 2003, no. 8, pp. 8–18. Kleshchev, A.S. and Smagin, S.V., Organization of computer experiments on inductive knowledge discovery, Autom. Doc. Math. Linguist., 2008, vol. 42, no. 1, pp. 17–26. Kleshchev, A.S. and Smagin, S.V., A general approach to computer experiments by inductive forming of knowledge, Program. Prod. Sist., 2008, no. 1, pp. 56–58. Kleshchev, A.S. and Smagin, S.V., Experimental study into the properties of the Monte-Carlo method for inductive formation of knowledge in terms of a simplified ontology for medical diagnostics, Autom. Doc. Math. Linguist., 2009, vol. 43, no. 4, pp. 207–220. Kleshchev, A.S. and Smagin, S.V., The role of internal and external evaluation of properties of methods for the inductive formation of knowledge, Autom. Doc. Math. Linguist., 2011, vol. 45, no. 2, pp. 91–106. Kleshchev, A.S. and Smagin, S.V., Parallelization of computations in solving the problem of inductive forming of knowledge databases, Iskusstv. Intell., 2006, no. 3, pp. 421–428. Kleschev, A.S. and Smagin, S.V., Problems of inductive formation of knowledge in the ontology of medical diagnosis, Autom. Doc. Math. Linguist., 2012, vol. 46, no. 1, pp. 8–21. MachineLearning. http://machinelearning.ru/ Zhuravlev, Yu.I., Ryazanov, V.V., and Sen’ko, O.V., “Raspoznavanie”. Matematicheskie metody. Programmnaya sistema. Prakticheskie primeneniya (Recognition. Mathematical Methods. Program System. Practical Applications), Moscow: Fazis, 2006. Finn, V.K., The role of machine learning in intelligent systems, Nauchn.-Tekhn. Inform., Ser. 2, 1999, no. 12, pp. 1–3. Vityaev, E.E., Izvlechenie znanii iz dannykh. Komp’yuternoe poznanie. Modeli kognitivnykh protsessov: Monografiya (Extracting Knowledge from Data. Computer Cognition. Models of Cognitive Processes: Monograph), Novosibirsk: Novosib. Gos. Univ., 2006. Kleshchev, A.S., Chernyakhovskaya, M.Yu., and Moskalenko, F.M., “Medical Diagnostics” Domain Ontology Model, Nauchn.-Tekhn. Inform., Ser. 2, 2005, no. 12, pp. 1–7; 2006, no. 2, pp. 19–30. Smagin, S.V., Software for inductive forming of medical knowledge databases, Program. Prod. Sist., 2014, no. 4, pp. 108–113. Smagin, S.V., The software package InForMedKB for inductive forming of medical knowledge databases in the form adopted in the medical literature, in Svidetel’Stvo o gosudarstvennoi registratsii programmy dlya EVM no. 2014610984 (Certificate of State Registration of a Computer no. 2014610984), 2014. Kriger, A.G., Fedorov, A.V., Voskresenskii, P.K., and Dronov, A.F., Ostryi appenditsit (Acute Appendicitis), Moscow: Medpraktika, 2002. Sedov, V.M., Appenditsit (Appendicitis), St. Petersburg: OOO Sankt-Peterb. Med. Izd., 2002. Rusanov, A.A., Appenditsit (Appendicitis), Leningrad: Meditsina, 1979. Nikiforova, N.Yu. and Chernyakhovskaya, M.Yu., Acute appendicitis knowledge database as a medical knowledge bank content component, Inf. Sist. Uprav., 2008, no. 3 (17), pp. 63–71.