An amorphous FeMoS4 nanorod array toward efficient hydrogen evolution electrocatalysis under neutral conditions

Chemical Communications - Tập 53 Số 64 - Trang 9000-9003
Xiang Ren1,2,3,4,5, Weiyi Wang1,2,3,6, Ruixiang Ge1,3,7,8,6, Shuai Hao1,2,3,6, Fengli Qu2,9,10,11, Guoping Du12,13,2, Abdullah M. Asiri14,15,16,17, Qin Wei2,18,5,19,20, Liang Chen2,21,22,8, Xuping Sun1,2,3,6
1Chengdu 610064
2China
3College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China
4Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
5Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
6Sichuan University
7Ningbo Institute of Materials Technology and Engineering
8Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, Ningbo 315201, Zhejiang, China
9College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
10Qufu 273165
11Qufu Normal University
12Chengdu 610081
13Chengdu Institute of Geology and Mineral Resources, Chengdu 610081, Sichuan, China
14Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
15Faculty of Science
16King Abdulaziz University
17Saudi Arabia
18Jinan 250022
19School of Chemistry and Chemical Engineering
20University of JiNan
21Chinese Academy of Science
22Ningbo 315201

Tóm tắt

As a durable catalyst, an FeMoS4 nanorod array on carbon cloth shows high activity for hydrogen evolution in neutral media, achieving a geometrical catalytic current density of 10 mA cm−2 at an overpotential of 204 mV.

Từ khóa


Tài liệu tham khảo

Lewis, 2006, Proc. Natl. Acad. Sci. U. S. A., 103, 15729, 10.1073/pnas.0603395103

Tang, 2015, Angew. Chem., Int. Ed., 54, 9351, 10.1002/anie.201503407

Dresselhaus, 2001, Nature, 414, 332, 10.1038/35104599

Service, 2009, Science, 324, 1257, 10.1126/science.324_1257

Walter, 2010, Chem. Rev., 110, 6446, 10.1021/cr1002326

Wang, 2016, Adv. Mater., 28, 215, 10.1002/adma.201502696

Zou, 2015, Chem. Soc. Rev., 44, 5148, 10.1039/C4CS00448E

Wu, 2015, J. Am. Chem. Soc., 137, 6983, 10.1021/jacs.5b01330

Zhang, 2017, Chem. Sci., 8, 2769, 10.1039/C6SC05687C

Norskov, 2005, J. Electrochem. Soc., 152, J23, 10.1149/1.1856988

Tang, 2016, Nano Lett., 16, 6617, 10.1021/acs.nanolett.6b03332

Gao, 2017, Nanotechnol., 28, 105705, 10.1088/1361-6528/aa52d3

Zhu, 2016, J. Mater. Chem. A, 4, 8974, 10.1039/C6TA01923D

Wang, 2015, J. Am. Chem. Soc., 137, 1587, 10.1021/ja511572q

Merki, 2011, Chem. Sci., 2, 1262, 10.1039/C1SC00117E

Morales-Guio, 2014, Acc. Chem. Res., 47, 2671, 10.1021/ar5002022

Merki, 2012, Chem. Sci., 3, 2515, 10.1039/c2sc20539d

Tian, 2014, Angew. Chem., Int. Ed., 53, 9577, 10.1002/anie.201403842

Jiang, 2014, Angew. Chem., Int. Ed., 53, 12855, 10.1002/anie.201406848

Xie, 2017, Angew. Chem., Int. Ed., 56, 1064, 10.1002/anie.201610776

Ren, 2017, J. Mater. Chem. A, 5, 7291, 10.1039/C7TA01027C

Ji, 2017, Chem. Commun., 53, 3070, 10.1039/C6CC09893B

Ma, 2017, Small, 13, 1700394, 10.1002/smll.201700394

Cui, 2017, ChemSusChem, 10, 1370, 10.1002/cssc.201700113

Ge, 2017, Chem. – Eur. J., 23, 6959, 10.1002/chem.201700408

Xia, 2014, Small, 10, 766, 10.1002/smll.201302224

Wang, 2016, Angew. Chem., Int. Ed., 55, 9055, 10.1002/anie.201603197

Toru, 2008, Appl. Surf. Sci., 254, 2441, 10.1016/j.apsusc.2007.09.063

Martin-Aranda, 1995, Appl. Catal., A, 127, 201, 10.1016/0926-860X(95)00037-2

Ozkar, 1992, Chem. Mater., 4, 1380, 10.1021/cm00024a046

Voiry, 2013, Nano Lett., 13, 6222, 10.1021/nl403661s

Xing, 2014, Adv. Mater., 26, 5702, 10.1002/adma.201401692

Zou, 2014, Angew. Chem., Int. Ed., 53, 4372, 10.1002/anie.201311111

Gupta, 2015, J. Power Sources, 279, 620, 10.1016/j.jpowsour.2015.01.009

Li, 2016, Adv. Sci., 3, 1500426, 10.1002/advs.201500426

Lu, 2015, Nat. Commun., 6, 6616, 10.1038/ncomms7616

Karunadasa, 2010, Nature, 464, 1329, 10.1038/nature08969

Wang, 2017, J. Mater. Chem. A, 10.1039/c7ta05521h