An alternative competing risk model to the Weibull distribution for modelling aging in lifetime data analysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
d’Agostino RB, Stephens MA (1986) Goodness-of-Fit Techniques. Marcel Dekker, New York
Bacha M, Celeux G, Idée E, Lannoy A, Vasseur D (1998) Estimation de modèles de durées de vie fortement censurées”. Eyrolles, Paris
Basu S, Sen A, Banerjee M (2003) Bayesian analysis of competing risks with partially masked cause of failure. Appl Stat 52:77–93
Berger JO, Sun D (1993) Bayesian analysis for the Poly-Weibull distribution. J Amer Stat Assoc 88:1412–1418
Berger JO, Sun D (1994) Bayesian sequential reliability for Weibull and related distributions. Ann Inst Stat Math 46:221–249
Bertholon H (2001) Une modélisation du vieillissement, PhD Thesis, Université Joseph Fourier, Grenoble
Cappé O, Guillin A, Marin JM, Robert CP (2004) Population Monte Carlo. J Comput Graph Stat 13:907–929
Celeux G, Marin JM, Robert CP (2005) Iterated Importance sampling in Missing Data Problems. Comput Stat Data Anal 50:3386–3404
Chan V, Meeker WQ (1999) A failure-time model for infant-mortality and wearout failure modes. IEEE Trans Reliab 48:377–387
Chanda KC (1954) A note on the consistency and maxima of the roots of likelihood equations. Biometrika 41:56–61
Craiu RV, Duchesne T (2004) Inference based on the EM algorithm for the competing risks model with masked causes of failure. Biometrika 91:543–558
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J Roy Stat Soc (Ser B) 39:1–38
Douc R, Guillin A, Marin JM, Robert CP (2005) Convergence of adaptive sampling schemes. Research Paper RR-5485, INRIA Futurs, February
Erto P (1982) New practical Bayes estimators for the 2-parameter Weibull distribution. IEEE Trans Reliab 31:194–197
Flehinger BJ, Reiser B, Yashchin E (2002) Parametric modeling for survival with competing risks and masked failure causes. Lifetime Data Anal 8:177–203
Friedman L, Gertsbakh IB (1980) Maximum likelihood estimation in a minimum-type model with exponential and Weibull failure modes. J Amer Stat Assoc 75:460–465
Gourieroux Ch, Monfort A (1996) Statistique et modèles économétriques. Economica, Paris
INSEE (2001) National French Institute for Statistics and Economic Studies, 195, rue de Bercy—Tour Gamma A—75582 Paris cedex 12, France, http://www.insee.fr.
Lannoy A, Procaccia H (2001) L’utilisation du jugement d’expert en sûreté de fonctionnement, éditions Tec&Doc, Paris
Lawless JF (1982) Statistical models and methods for lifetime data. Wiley, New York
McLachlan GJ, Krishnam T (1997). The EM algorithm and extensions. Wiley, New York
Meeker WQ, Escobar LA (1998) Statistical methods for reliability data. New York, Wiley
Park C, Padgett WJ (2004) Analysis of strength distributions of multi-modal failures using the EM algorithm. Technical report No. 220, Department of Statistics, University of South Carolina,
Schafer RE (1969) Bayesian reliability demonstration, phase I–data for the a priori distribution, RADC-TR-69-389, Rome Air Development Center
Schafer RE, Sheffield TS (1971) Bayesian reliability demonstration, phase II—development of a prior distribution, RADC-TR-71-139, Rome Air Development Center
Steele R, Raftery AE, Emond M (2003) Computing normalizing constants for finite mixture models via incremental mixture importance sampling (IMIS). Technical Report no. 436, Department of Statistics, University of Washington
Tanner MA, Wong W (1987) The calculation of posterior distributions by data augmentation (with discussion). J Amer Stat Assoc 82:528–550
Tanner MA (1991) Tools for statistical inference, observed data and data augmentation methods, Lectures notes in statistics. Springer-Verlag, New York