An allosteric ribozyme generator and an inverse folding ribozyme generator: Two computer programs for automated computational design of oligonucleotide-sensing allosteric hammerhead ribozymes with YES Boolean logic function based on experimentally validated algorithms
Tài liệu tham khảo
Kong, 2013, Nucleic Acid aptamers: new methods for selection, stabilization, and application in biomedical science, Biomolecules Ther., 21, 423, 10.4062/biomolther.2013.085
Breaker, 2018, Riboswitches and translation control, Cold Spring Harbor Perspect. Biol., 10, a032797, 10.1101/cshperspect.a032797
Breaker, 2011, Prospects for riboswitch discovery and analysis, Mol. Cell, 43, 867, 10.1016/j.molcel.2011.08.024
Sherwood, 2016, Riboswitch-mediated gene regulation: novel RNA architectures dictate gene expression responses, Annu. Rev. Microbiol., 70, 361, 10.1146/annurev-micro-091014-104306
Ge, 2021, Aptamers, riboswitches, and ribozymes in S. cerevisiae synthetic biology, Life, 11, 248, 10.3390/life11030248
Hermann, 2000, Adaptive recognition by nucleic acid aptamers, Science, 287, 820, 10.1126/science.287.5454.820
Jose, 2001, Cooperative binding of effectors by an allosteric ribozyme, Nucleic Acids Res., 29, 1631, 10.1093/nar/29.7.1631
Soukup, 1999, Engineering precision RNA molecular switches, Proc. Natl. Acad. Sci. Unit. States Am., 96, 3584, 10.1073/pnas.96.7.3584
Robertson, 2004, In vitro selection of ribozymes dependent on peptides for activity, RNA, 10, 114, 10.1261/rna.5900204
Koizumi, 1999, Allosteric ribozymes sensitive to the second messengers cAMP and cGMP, Nucleic Acids Symp. Ser., 275, 10.1093/nass/42.1.275
Findeiß, 2017, Design of artificial riboswitches as biosensors, Sensors, 17, 1990, 10.3390/s17091990
Villa, 2018, Synthetic biology of small RNAs and riboswitches, Microbiol. Spectr., 6
Blount, 2006, Development and application of a high-throughput assay for glmS riboswitch activators, RNA Biol., 3, 77, 10.4161/rna.3.2.3102
Penchovsky, 2013, Computational design and biosensor applications of small molecule-sensing allosteric ribozymes, Biomacromolecules, 14, 1240, 10.1021/bm400299a
Penchovsky, 2019, Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor, Biosens. Bioelectron., 135, 30, 10.1016/j.bios.2019.04.014
Penchovsky, 2013, Programmable and automated bead-based microfluidics for versatile DNA microarrays under isothermal conditions, Lab Chip, 13, 2370, 10.1039/c3lc50208b
Penchovsky, 2012, Engineering integrated digital circuits with allosteric ribozymes for scaling up molecular computation and diagnostics, ACS Synth. Biol., 1, 471, 10.1021/sb300053s
Penchovsky, 2013, Computational selection and experimental validation of allosteric ribozymes that sense a specific sequence of human telomerase reverse transcriptase mRNAs as universal anticancer therapy agents, Nucleic Acid Therapeut., 23, 408, 10.1089/nat.2013.0446
Penchovsky, 2013, Computational design and biosensor applications of small molecule-sensing allosteric ribozymes, Biomacromolecules, 14, 1240, 10.1021/bm400299a
Penchovsky, 2014, Computational design of allosteric ribozymes as molecular biosensors, Biotechnol. Adv., 32, 1015, 10.1016/j.biotechadv.2014.05.005
Scott, 1996, Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme, Science, 274, 2065, 10.1126/science.274.5295.2065
Glouzon, 2017, The super-n-motifs model: a novel alignment-free approach for representing and comparing RNA secondary structures, Bioinformatics, 33, 1169, 10.1093/bioinformatics/btw773
Hofacker, 2004, Alignment of RNA base pairing probability matrices, Bioinformatics, 20, 2222, 10.1093/bioinformatics/bth229
Ning, 2020, Aptamers used for biosensors and targeted therapy, Biomed. Pharmacother., 132, 10.1016/j.biopha.2020.110902
Panchal, 2021, Riboswitches as drug targets for antibiotics, Antibiotics (Basel, Switzerland), 10, 45
Pavlova, 2019, Riboswitch distribution, structure, and function in bacteria, Gene, 708, 38, 10.1016/j.gene.2019.05.036
Penchovsky, 2013, Riboswitch-based antibacterial drug discovery using high-throughput screening methods, Expet Opin. Drug Discov., 8, 65, 10.1517/17460441.2013.740455
Lewin, 2001, Ribozyme gene therapy: applications for molecular medicine, Trends Mol. Med., 7, 221, 10.1016/S1471-4914(01)01965-7
Schubert, 2004, Ribozyme- and deoxyribozyme-strategies for medical applications, Curr. Drug Targets, 5, 667, 10.2174/1389450043345092
Stojanović, 2003, Deoxyribozyme-based half-adder, J. Am. Chem. Soc., 125, 6673, 10.1021/ja0296632
Stojanovic, 2003, A deoxyribozyme-based molecular automaton, Nat. Biotechnol., 21, 1069, 10.1038/nbt862
Zou, 2009, Predicting RNA secondary structure based on the class information and Hopfield network, Comput. Biol. Med., 39, 206, 10.1016/j.compbiomed.2008.12.010
Lorenz, 2011, ViennaRNA package 2.0, Algorithm Mol. Biol., 6, 26, 10.1186/1748-7188-6-26
Choi, 2013, Predicting protein-binding RNA nucleotides using the feature-based removal of data redundancy and the interaction propensity of nucleotide triplets, Comput. Biol. Med., 43, 1687, 10.1016/j.compbiomed.2013.08.011
Lanjanian, 2021, High-throughput analysis of the interactions between viral proteins and host cell RNAs, Comput. Biol. Med., 135, 10.1016/j.compbiomed.2021.104611
Edera, 2021, Deepred-Mt: deep representation learning for predicting C-to-U RNA editing in plant mitochondria, Comput. Biol. Med., 136, 10.1016/j.compbiomed.2021.104682
Jeon, 2013, GPU-based acceleration of an RNA tertiary structure prediction algorithm, Comput. Biol. Med., 43, 1011, 10.1016/j.compbiomed.2013.05.007
Bernhart, 2006, Partition function and base pairing probabilities of RNA heterodimers, Algorithm Mol. Biol., 1, 3, 10.1186/1748-7188-1-3
Hofacker, 1994, Fast folding and comparison of RNA secondary structures, Monatshefte für Chemie/Chemical Monthly, 125, 167, 10.1007/BF00818163
Penchovsky, 2003, DNA library design for molecular computation, Journal of computational biololy, 10, 215, 10.1089/106652703321825973
Penchovsky, 2005, Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes, Nat. Biotechnol., 23, 1424, 10.1038/nbt1155
Penchovsky, 2005, Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes, Nat. Biotechnol., 23, 1424, 10.1038/nbt1155
Penchovsky, 2013, Computational selection and experimental validation of allosteric ribozymes that sense a specific sequence of human telomerase reverse transcriptase mRNAs as universal anticancer therapy agents, Nucleic Acid Therapeut., 23, 408, 10.1089/nat.2013.0446
Penchovsky, 2012, Engineering integrated digital circuits with allosteric ribozymes for scaling up molecular computation and diagnostics, ACS Synth. Biol., 1, 471, 10.1021/sb300053s
Penchovsky, 2014, Computational design of allosteric ribozymes as molecular biosensors, Biotechnol. Adv., 32, 1015, 10.1016/j.biotechadv.2014.05.005
Hofacker, 2009, RNA secondary structure analysis using the Vienna RNA package, Current Protocols in Bioinformatics, 26, 12.2.1, 10.1002/0471250953.bi1202s26
McCaskill, 1990, The equilibrium partition function and base pair binding probabilities for RNA secondary structure, Biopolymers, 29, 1105, 10.1002/bip.360290621
Höner zu Siederdissen, 2011, A folding algorithm for extended RNA secondary structures, Bioinformatics, 27, i129, 10.1093/bioinformatics/btr220
Andronescu, 2007, Efficient parameter estimation for RNA secondary structure prediction, Bioinformatics, 23, i19, 10.1093/bioinformatics/btm223
Turner, 1996, Thermodynamics of base pairing, Curr. Opin. Struct. Biol., 6, 299, 10.1016/S0959-440X(96)80047-9
Knudsen, 1999, RNA secondary structure prediction using stochastic context-free grammars and evolutionary history, Bioinformatics, 15, 446, 10.1093/bioinformatics/15.6.446
Le, 1991, Predicting common foldings of homologous RNAs, J. Biomol. Struct. Dynam., 8, 1027, 10.1080/07391102.1991.10507863