An all-C–H-activation strategy to rapidly synthesize high-mobility well-balanced ambipolar semiconducting polymers

Matter - Tập 5 Số 6 - Trang 1953-1968 - 2022
Tao Shen1, Wenhao Li1, Yan Zhao1, Yunqi Liu2,1, Yang Wang1
1Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
2Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Someya, 2016, The rise of plastic bioelectronics, Nature, 540, 379, 10.1038/nature21004

Shi, 2020, When flexible organic field-effect transistors meet biomimetics: a prospective view of the internet of things, Adv. Mater., 32, 1901493, 10.1002/adma.201901493

Kim, 2018, A bioinspired flexible organic artificial afferent nerve, Science, 360, 998, 10.1126/science.aao0098

Feng, 2021, n-Type organic and polymeric semiconductors based on bithiophene imide derivatives, Acc. Chem. Res., 54, 3804, 10.1021/acs.accounts.1c00381

Guo, 2021, Transition metal-catalysed molecular n-doping of organic semiconductors, Nature, 599, 67, 10.1038/s41586-021-03942-0

Matsuhisa, 2021, High-frequency and intrinsically stretchable polymer diodes, Nature, 600, 246, 10.1038/s41586-021-04053-6

Sirringhaus, 2014, Organic field-effect transistors: the path beyond amorphous silicon, Adv. Mater., 26, 1319, 10.1002/adma.201304346

Guo, 2021, Molecular weight engineering in high-performance ambipolar emissive mesopolymers, Angew. Chem. Int. Ed., 60, 14902, 10.1002/anie.202105036

Nakano, 2017, Control of major carriers in an ambipolar polymer semiconductor by self-assembled monolayers, Adv. Mater., 29, 1602893, 10.1002/adma.201602893

Shi, 2018, Well-balanced ambipolar conjugated polymers featuring mild glass transition temperatures toward high-performance flexible field-effect transistors, Adv. Mater., 30, 1705286, 10.1002/adma.201705286

Liu, 2020, Developments of diketopyrrolopyrrole-dye-based organic semiconductors for a wide range of applications in electronics, Adv. Mater., 32, 1903882, 10.1002/adma.201903882

Lee, 2012, Solution-processable ambipolar diketopyrrolopyrrole–selenophene polymer with unprecedentedly high hole and electron mobilities, J. Am. Chem. Soc., 134, 20713, 10.1021/ja308927g

Yang, 2017, Bis-diketopyrrolopyrrole moiety as a promising building block to enable balanced ambipolar polymers for flexible transistors, Adv. Mater., 29, 1606162, 10.1002/adma.201606162

Yi, 2018, Triple acceptors in a polymeric architecture for balanced ambipolar transistors and high-gain inverters, Adv. Mater., 30, 1801951, 10.1002/adma.201801951

Chen, 2012, Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors, Adv. Mater., 24, 4618, 10.1002/adma.201201318

Bijleveld, 2009, Poly(diketopyrrolopyrrole−terthiophene) for ambipolar logic and photovoltaics, J. Am. Chem. Soc., 131, 16616, 10.1021/ja907506r

Li, 2011, Annealing-free high-mobility diketopyrrolopyrrole-quaterthiophene copolymer for solution-processed organic thin film transistors, J. Am. Chem. Soc., 133, 2198, 10.1021/ja1085996

Cinar, 2015, Thienothiophenes, dithienothiophenes, and dhienoacenes: syntheses, oligomers, polymers, and properties, Chem. Rev., 115, 3036, 10.1021/cr500271a

Sun, 2014, Record high electron mobility of 6.3 cm2 V−1 s−1 achieved for polymer semiconductors using a new building block, Adv. Mater., 26, 2636, 10.1002/adma.201305981

Ni, 2018, Quinoline-flanked diketopyrrolopyrrole copolymers breaking through electron mobility over 6 cm2 V−1 s−1 in flexible thin film devices, Adv. Mater., 30, 1704843, 10.1002/adma.201704843

Yuan, 2016, Unipolar electron transport polymers: a thiazole based all-electron acceptor approach, Chem. Mater., 28, 6045, 10.1021/acs.chemmater.6b01929

Carsten, 2011, Stille polycondensation for synthesis of functional materials, Chem. Rev., 111, 1493, 10.1021/cr100320w

Lee, 2018, Stepwise heating in Stille polycondensation toward no batch-to-batch variations in polymer solar cell performance, Nat. Commun., 9, 1867, 10.1038/s41467-018-03718-7

Hoch, 2001, Organotin compounds in the environment-An overview, Appl. Geochem., 16, 719, 10.1016/S0883-2927(00)00067-6

Facchetti, 2012, Semiconducting polymers prepared by direct arylation polycondensation, Angew. Chem. Int. Ed., 51, 3520, 10.1002/anie.201200199

Segawa, 2015, Synthesis of extended π-systems through C–H activation, Angew. Chem. Int. Ed., 54, 66, 10.1002/anie.201403729

Wang, 2019, Significant difference in semiconducting properties of isomeric all-acceptor polymers synthesized via direct arylation polycondensation, Angew. Chem. Int. Ed., 58, 11893, 10.1002/anie.201904966

Zhao, 2021, Direct arylation polycondensation toward water/alcohol-soluble conjugated polymers: influence of side chain functional groups, ACS Macro Lett., 10, 419, 10.1021/acsmacrolett.1c00073

Gao, 2015, High mobility ambipolar diketopyrrolopyrrole-based conjugated polymer synthesized via direct arylation polycondensation, Adv. Mater., 27, 6753, 10.1002/adma.201502896

Matsidik, 2015, Defect-free naphthalene diimide bithiophene copolymers with controlled molar mass and high performance via direct arylation polycondensation, J. Am. Chem. Soc., 137, 6705, 10.1021/jacs.5b03355

Guo, 2018, Diketopyrrolopyrrole-based conjugated polymers synthesized via direct arylation polycondensation for high mobility pure n-channel organic field-effect transistors, Adv. Funct. Mater., 28, 1801097, 10.1002/adfm.201801097

Wang, 2020, Naphthodithiophenediimide–bithiopheneimide copolymers for high-performance n-type organic thermoelectrics: significant impact of backbone orientation on conductivity and thermoelectric performance, Adv. Mater., 32, 2002060, 10.1002/adma.202002060

Ni, 2019, Ambipolar conjugated polymers with ultrahigh balanced hole and electron mobility for printed organic complementary logic via a two-step C-H activation strategy, Adv. Mater., 31, 1806010, 10.1002/adma.201806010

Yang, 2018, Insight into high-performance conjugated polymers for organic field-effect transistors, Chem, 4, 2748, 10.1016/j.chempr.2018.08.005

Lafrance, 2006, Palladium-catalyzed benzene arylation: incorporation of catalytic pivalic acid as a proton shuttle and a key element in catalyst design, J. Am. Chem. Soc., 128, 16496, 10.1021/ja067144j

Lombeck, 2014, Identifying homocouplings as critical side reactions in direct arylation polycondensation, ACS Macro Lett., 3, 819, 10.1021/mz5004147

Morin, 2015, Conjugated polymers à la carte from time-controlled direct (hetero)arylation polymerization, ACS Macro Lett., 4, 21, 10.1021/mz500656g

Meena, 2020, A selenium-coordinated palladium(II) trans-dichloride molecular rotor as a catalyst for site-selective annulation of 2-arylimidazo[1,2-a]pyridines, Chem. Commun., 56, 10223, 10.1039/D0CC03599H

Zhang, 2020, Selenium heterocyclic electron acceptor with small urbach energy for as-cast high-performance organic solar cells, J. Am. Chem. Soc., 142, 18741, 10.1021/jacs.0c08557

Spano, 2010, The spectral signatures of frenkel polarons in H- and J-aggregates, Acc. Chem. Res., 43, 429, 10.1021/ar900233v

Eder, 2019, Interplay between J- and H-type coupling in aggregates of π-conjugated polymers: a single-molecule perspective, Angew. Chem. Int. Ed., 58, 18898, 10.1002/anie.201912374

Yagai, 2012, Self-organization of hydrogen-bonding naphthalene chromophores into J-type nanorings and H-type nanorods: impact of regioisomerism, Angew. Chem.,Int. Ed., 51, 6643, 10.1002/anie.201201436

Motherwell, 2018, Noncovalent interactions of π systems with sulfur: the atomic chameleon of molecular recognition, Angew. Chem. Int. Ed., 57, 1193, 10.1002/anie.201708485

Ni, 2019, Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems, Nat. Chem., 11, 271, 10.1038/s41557-018-0200-y

Guo, 2014, Imide- and amide-functionalized polymer semiconductors, Chem. Rev., 114, 8943, 10.1021/cr500225d

Pietro, 2012, Spectroscopic investigation of oxygen- and water-induced electron trapping and charge transport instabilities in n-type polymer semiconductors, J. Am. Chem. Soc., 134, 14877, 10.1021/ja304198e

Park, 2013, A fluorinated phenylene unit as a building block for high-performance n-type semiconducting polymer, Adv. Mater., 25, 2583, 10.1002/adma.201205320

Kang, 2016, Side-chain-induced rigid backbone organization of polymer semiconductors through semifluoroalkyl side chains, J. Am.Chem. Soc., 138, 3679, 10.1021/jacs.5b10445

Kronemeijer, 2012, A selenophene-based low-bandgap donor-acceptor polymer leading to fast ambipolar logic, Adv. Mater., 24, 1558, 10.1002/adma.201104522