An all-C–H-activation strategy to rapidly synthesize high-mobility well-balanced ambipolar semiconducting polymers
Tóm tắt
Từ khóa
Tài liệu tham khảo
Shi, 2020, When flexible organic field-effect transistors meet biomimetics: a prospective view of the internet of things, Adv. Mater., 32, 1901493, 10.1002/adma.201901493
Kim, 2018, A bioinspired flexible organic artificial afferent nerve, Science, 360, 998, 10.1126/science.aao0098
Feng, 2021, n-Type organic and polymeric semiconductors based on bithiophene imide derivatives, Acc. Chem. Res., 54, 3804, 10.1021/acs.accounts.1c00381
Guo, 2021, Transition metal-catalysed molecular n-doping of organic semiconductors, Nature, 599, 67, 10.1038/s41586-021-03942-0
Matsuhisa, 2021, High-frequency and intrinsically stretchable polymer diodes, Nature, 600, 246, 10.1038/s41586-021-04053-6
Sirringhaus, 2014, Organic field-effect transistors: the path beyond amorphous silicon, Adv. Mater., 26, 1319, 10.1002/adma.201304346
Guo, 2021, Molecular weight engineering in high-performance ambipolar emissive mesopolymers, Angew. Chem. Int. Ed., 60, 14902, 10.1002/anie.202105036
Nakano, 2017, Control of major carriers in an ambipolar polymer semiconductor by self-assembled monolayers, Adv. Mater., 29, 1602893, 10.1002/adma.201602893
Shi, 2018, Well-balanced ambipolar conjugated polymers featuring mild glass transition temperatures toward high-performance flexible field-effect transistors, Adv. Mater., 30, 1705286, 10.1002/adma.201705286
Liu, 2020, Developments of diketopyrrolopyrrole-dye-based organic semiconductors for a wide range of applications in electronics, Adv. Mater., 32, 1903882, 10.1002/adma.201903882
Lee, 2012, Solution-processable ambipolar diketopyrrolopyrrole–selenophene polymer with unprecedentedly high hole and electron mobilities, J. Am. Chem. Soc., 134, 20713, 10.1021/ja308927g
Yang, 2017, Bis-diketopyrrolopyrrole moiety as a promising building block to enable balanced ambipolar polymers for flexible transistors, Adv. Mater., 29, 1606162, 10.1002/adma.201606162
Yi, 2018, Triple acceptors in a polymeric architecture for balanced ambipolar transistors and high-gain inverters, Adv. Mater., 30, 1801951, 10.1002/adma.201801951
Chen, 2012, Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors, Adv. Mater., 24, 4618, 10.1002/adma.201201318
Bijleveld, 2009, Poly(diketopyrrolopyrrole−terthiophene) for ambipolar logic and photovoltaics, J. Am. Chem. Soc., 131, 16616, 10.1021/ja907506r
Li, 2011, Annealing-free high-mobility diketopyrrolopyrrole-quaterthiophene copolymer for solution-processed organic thin film transistors, J. Am. Chem. Soc., 133, 2198, 10.1021/ja1085996
Cinar, 2015, Thienothiophenes, dithienothiophenes, and dhienoacenes: syntheses, oligomers, polymers, and properties, Chem. Rev., 115, 3036, 10.1021/cr500271a
Sun, 2014, Record high electron mobility of 6.3 cm2 V−1 s−1 achieved for polymer semiconductors using a new building block, Adv. Mater., 26, 2636, 10.1002/adma.201305981
Ni, 2018, Quinoline-flanked diketopyrrolopyrrole copolymers breaking through electron mobility over 6 cm2 V−1 s−1 in flexible thin film devices, Adv. Mater., 30, 1704843, 10.1002/adma.201704843
Yuan, 2016, Unipolar electron transport polymers: a thiazole based all-electron acceptor approach, Chem. Mater., 28, 6045, 10.1021/acs.chemmater.6b01929
Carsten, 2011, Stille polycondensation for synthesis of functional materials, Chem. Rev., 111, 1493, 10.1021/cr100320w
Lee, 2018, Stepwise heating in Stille polycondensation toward no batch-to-batch variations in polymer solar cell performance, Nat. Commun., 9, 1867, 10.1038/s41467-018-03718-7
Hoch, 2001, Organotin compounds in the environment-An overview, Appl. Geochem., 16, 719, 10.1016/S0883-2927(00)00067-6
Facchetti, 2012, Semiconducting polymers prepared by direct arylation polycondensation, Angew. Chem. Int. Ed., 51, 3520, 10.1002/anie.201200199
Segawa, 2015, Synthesis of extended π-systems through C–H activation, Angew. Chem. Int. Ed., 54, 66, 10.1002/anie.201403729
Wang, 2019, Significant difference in semiconducting properties of isomeric all-acceptor polymers synthesized via direct arylation polycondensation, Angew. Chem. Int. Ed., 58, 11893, 10.1002/anie.201904966
Zhao, 2021, Direct arylation polycondensation toward water/alcohol-soluble conjugated polymers: influence of side chain functional groups, ACS Macro Lett., 10, 419, 10.1021/acsmacrolett.1c00073
Gao, 2015, High mobility ambipolar diketopyrrolopyrrole-based conjugated polymer synthesized via direct arylation polycondensation, Adv. Mater., 27, 6753, 10.1002/adma.201502896
Matsidik, 2015, Defect-free naphthalene diimide bithiophene copolymers with controlled molar mass and high performance via direct arylation polycondensation, J. Am. Chem. Soc., 137, 6705, 10.1021/jacs.5b03355
Guo, 2018, Diketopyrrolopyrrole-based conjugated polymers synthesized via direct arylation polycondensation for high mobility pure n-channel organic field-effect transistors, Adv. Funct. Mater., 28, 1801097, 10.1002/adfm.201801097
Wang, 2020, Naphthodithiophenediimide–bithiopheneimide copolymers for high-performance n-type organic thermoelectrics: significant impact of backbone orientation on conductivity and thermoelectric performance, Adv. Mater., 32, 2002060, 10.1002/adma.202002060
Ni, 2019, Ambipolar conjugated polymers with ultrahigh balanced hole and electron mobility for printed organic complementary logic via a two-step C-H activation strategy, Adv. Mater., 31, 1806010, 10.1002/adma.201806010
Yang, 2018, Insight into high-performance conjugated polymers for organic field-effect transistors, Chem, 4, 2748, 10.1016/j.chempr.2018.08.005
Lafrance, 2006, Palladium-catalyzed benzene arylation: incorporation of catalytic pivalic acid as a proton shuttle and a key element in catalyst design, J. Am. Chem. Soc., 128, 16496, 10.1021/ja067144j
Lombeck, 2014, Identifying homocouplings as critical side reactions in direct arylation polycondensation, ACS Macro Lett., 3, 819, 10.1021/mz5004147
Morin, 2015, Conjugated polymers à la carte from time-controlled direct (hetero)arylation polymerization, ACS Macro Lett., 4, 21, 10.1021/mz500656g
Meena, 2020, A selenium-coordinated palladium(II) trans-dichloride molecular rotor as a catalyst for site-selective annulation of 2-arylimidazo[1,2-a]pyridines, Chem. Commun., 56, 10223, 10.1039/D0CC03599H
Zhang, 2020, Selenium heterocyclic electron acceptor with small urbach energy for as-cast high-performance organic solar cells, J. Am. Chem. Soc., 142, 18741, 10.1021/jacs.0c08557
Spano, 2010, The spectral signatures of frenkel polarons in H- and J-aggregates, Acc. Chem. Res., 43, 429, 10.1021/ar900233v
Eder, 2019, Interplay between J- and H-type coupling in aggregates of π-conjugated polymers: a single-molecule perspective, Angew. Chem. Int. Ed., 58, 18898, 10.1002/anie.201912374
Yagai, 2012, Self-organization of hydrogen-bonding naphthalene chromophores into J-type nanorings and H-type nanorods: impact of regioisomerism, Angew. Chem.,Int. Ed., 51, 6643, 10.1002/anie.201201436
Motherwell, 2018, Noncovalent interactions of π systems with sulfur: the atomic chameleon of molecular recognition, Angew. Chem. Int. Ed., 57, 1193, 10.1002/anie.201708485
Ni, 2019, Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems, Nat. Chem., 11, 271, 10.1038/s41557-018-0200-y
Guo, 2014, Imide- and amide-functionalized polymer semiconductors, Chem. Rev., 114, 8943, 10.1021/cr500225d
Pietro, 2012, Spectroscopic investigation of oxygen- and water-induced electron trapping and charge transport instabilities in n-type polymer semiconductors, J. Am. Chem. Soc., 134, 14877, 10.1021/ja304198e
Park, 2013, A fluorinated phenylene unit as a building block for high-performance n-type semiconducting polymer, Adv. Mater., 25, 2583, 10.1002/adma.201205320
Kang, 2016, Side-chain-induced rigid backbone organization of polymer semiconductors through semifluoroalkyl side chains, J. Am.Chem. Soc., 138, 3679, 10.1021/jacs.5b10445