An algebraic approach to the algebraic Weinstein conjecture
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abouzaid, M.: A geometric criterion for generating the Fukaya category. Publ. Math. l’IHÉS 112, 191–240 (2010)
Abouzaid, M.: Symplectic cohomology and Viterbo’s theorem. In: Latschev, J., Oancea, A. (eds.) Free Loop Spaces in Geometry and Topology, pp. 271–485. European Mathematical Society, Zurich (2015)
Albers, P., Hofer, H.: On the Weinstein conjecture in higher dimensions. arXiv:0705.3953
Alvarez-Gavela, D., Eliashberg, Y., Nadler, D.: Positive arborealization of polarized Weinstein manifolds. arXiv:2011.08962
Bourgeois, F., Ekholm, T., Eliashberg, Y.: Effect of Legendrian surgery. Geometry Topol. 16(1), 301–389 (2012)
Burghelea, D., Fiedorowicz, Z.: Cyclic homology and algebraic k-theory of spaces-ii. Topology 25(3), 303–317 (1986)
Baptiste, C., Rizell, G.D., Ghiggini, P., Golovko, R.: Geometric generation of the wrapped Fukaya category of Weinstein manifolds and sectors. arXiv:1712.09126
Cieliebak, K., Eliashberg, Y.: From Stein to Weinstein and Back: Symplectic Geometry of Affine Complex Manifolds. American Mathematical Society, Providence (2012)
Cieliebak, K., Latschev, J.: The role of string topology in symplectic field theory. New perspectives and challenges in symplectic field theory 49, 113–146 (2009)
Dyckerhoff, T., Kapranov, M.: Triangulated surfaces in triangulated categories. J. Eur. Math. Soc. 20(6), 1473–1524 (2018)
Ekholm, T.: Holomorphic curves for Legendrian surgery. arXiv:1906.07228
Ekholm, T., Lekili, Y.: Duality between Lagrangian and Legendrian invariants. arXiv:1701.01284
Fet, A., Lyusternik, L.: Variational problems on closed manifolds. Dokl. Akad. Nauk SSSR 81, 17–18 (1951)
Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Intersection Floer Theory: Anomaly and Obstruction. American Mathematical Society, Providence (2010)
Ganatra, G.: Symplectic cohomology and duality for the wrapped Fukaya category. arXiv:1304.7312
Ganatra, G., Pardon, J., Shende, V.: Microlocal Morse theory of wrapped Fukaya categories. arXiv:1809.08807
Ganatra, G., Pardon, J., Shende, V.: Sectorial descent for wrapped Fukaya categories. arXiv:1809.03427
Ganatra, S., Pardon, J., Shende, V.: Covariantly functorial wrapped Floer theory on Liouville sectors. Publ. Math. l’IHÉS 131(1), 73–200 (2020)
Goodwillie, T.G.: Cyclic homology, derivations, and the free loopspace. Topology 24(2), 187–215 (1985)
Hofer, H.: Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Invent. Math. 114(1), 515–563 (1993)
Hofer, H., Viterbo, C.: The Weinstein conjecture in cotangent bundles and related results. Annal. Scuola Norm. Superiore Pisa-Classe Sci. 15(3), 411–445 (1988)
Hofer, H., Viterbo, C.: The weinstein conjecture in the presence of holomorphic spheres. Commun. Pure Appl. Math. 45(5), 583–622 (1992)
Kashiwara, M., Schapira, P.: Sheaves on Manifolds. Springer, Berlin (2013)
Klingenberg, W.: Lectures on Closed Geodesics. Springer, Berlin (2012)
Kontsevich, M.: Symplectic geometry of homological algebra. (available at the author’s webpage) (2009)
Kragh, T.: The Viterbo transfer as a map of spectra. arXiv:0712.2533
Nadler, D.: Non-characteristic expansions of Legendrian singularities. arXiv:1507.01513
Nadler, D., Shende, V.: Sheaf quantization in Weinstein symplectic manifolds. arXiv:2007.10154
Niederkrüger, K.: The plastikstufe—a generalization of the overtwisted disk to higher dimensions. Algebr. Geometr. Topol. 6(5), 2473–2508 (2006)
Seidel, P.: Fukaya categories and deformations. arXiv:math/0206155
Seidel, P.: Fukaya Categories and Picard–Lefschetz Theory, vol. 10. European Mathematical Society, Zurich (2008)
Seidel, P.: Symplectic homology as Hochschild homology. Algebr. Geometry Seattle 2005, 415–434 (2009)
Shende, V.: Arboreal singularities from Lefschetz fibrations. arXiv:1809.10359
Shende, V.: Microlocal category for Weinstein manifolds via h-principle. arXiv:1707.07663
Shende, V., Takeda, A.: Calabi-Yau structures on topological Fukaya categories. arXiv:1605.02721
Starkston, L.: Arboreal singularities in Weinstein skeleta. Sel. Math. New Ser. 24(5), 4105–4140 (2018)
Clifford Henry Taubes: The Seiberg–Witten equations and the Weinstein conjecture. Geometry Topol. 11(4), 2117–2202 (2007)
Vigué-Poirrier, M., Sullivan, D.: The homology theory of the closed geodesic problem. J. Differ. Geometry 11(4), 633–644 (1976)
Viterbo, C.: Functors and Computations in Floer homology with applications, II. arXiv:1805.01316
Viterbo, C.: A proof of Weinstein’s conjecture in $$\mathbb{R}^{2n}$$. Ann. l’Inst. Henri Poincare (C) Non Linear Anal. 4(4), 337–356 (1987)
Viterbo, C.: Generating functions, symplectic geometry, and applications. In: Proceedings of the International Congress of Mathematicians, pp. 537–547. Springer (1995)
Viterbo, C.: Functors and computations in Floer homology with applications. I. Geom. Funct. Anal. 9(5), 985–1033 (1999)