An air-stable Dy(iii) single-ion magnet with high anisotropy barrier and blocking temperature

Chemical Science - Tập 7 Số 8 - Trang 5181-5191
Sandeep K. Gupta1,2,3,4, Thayalan Rajeshkumar1,2,3,4, Gopalan Rajaraman1,2,3,4, Ramaswamy Murugavel1,2,3,4
1Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India
2India
3Indian Institute of Technology, Bombay
4Mumbai-400076

Tóm tắt

A mononuclear Dy(iii) complex assembled just from five water molecules and two phosphonic diamide ligands combines the advantages of high anisotropy barrier, high blocking temperature and significant coercivity, apart from its remarkable air- and moisture-stability.

Từ khóa


Tài liệu tham khảo

Blagg, 2013, Nat. Chem., 5, 673, 10.1038/nchem.1707

Rinehart, 2011, Nat. Chem., 3, 538, 10.1038/nchem.1063

Rinehart, 2011, J. Am. Chem. Soc., 133, 14236, 10.1021/ja206286h

Ganivet, 2013, Chem.–Eur. J., 19, 1457, 10.1002/chem.201202600

Perfetti, 2014, Chem.–Eur. J., 20, 14051, 10.1002/chem.201404218

Le Roy, 2014, Chem. Commun., 50, 1602, 10.1039/C3CC48557A

D. Gatteschi , R.Sessoli and J.Villain, in Molecular Nanomagnets, Oxford University Press, 2006

Jiang, 2011, J. Am. Chem. Soc., 133, 4730, 10.1021/ja200198v

Jiang, 2012, Inorg. Chem., 51, 3079, 10.1021/ic202511n

Perfetti, 2015, Inorg. Chem., 54, 3090, 10.1021/acs.inorgchem.5b00288

Demir, 2012, J. Am. Chem. Soc., 134, 18546, 10.1021/ja308945d

Ungur, 2014, Angew. Chem., Int. Ed., 53, 4413, 10.1002/anie.201310451

Brown, 2015, Angew. Chem., Int. Ed., 54, 5864, 10.1002/anie.201411190

Boulon, 2013, Angew. Chem., Int. Ed., 52, 350, 10.1002/anie.201205938

Rechkemmer, 2015, J. Am. Chem. Soc., 137, 13114, 10.1021/jacs.5b08344

Lucaccini, 2014, Chem. Commun., 50, 1648, 10.1039/C3CC48866G

Cucinotta, 2012, Angew. Chem., Int. Ed., 51, 1606, 10.1002/anie.201107453

Gregson, 2016, Chem. Sci., 7, 155, 10.1039/C5SC03111G

Pointillart, 2015, Angew. Chem., Int. Ed., 54, 1504, 10.1002/anie.201409887

Vincent, 2012, Nature, 488, 357, 10.1038/nature11341

Urdampilleta, 2011, Nat. Mater., 10, 502, 10.1038/nmat3050

Ishikawa, 2003, J. Am. Chem. Soc., 125, 8694, 10.1021/ja029629n

Blagg, 2011, Angew. Chem., Int. Ed., 50, 6530, 10.1002/anie.201101932

Tang, 2006, Angew. Chem., Int. Ed., 45, 1729, 10.1002/anie.200503564

Rajeshkumar, 2012, Chem. Commun., 48, 7856, 10.1039/c2cc33483f

Zhang, 2013, J. Phys. Chem. A, 117, 10873, 10.1021/jp4044495

Langley, 2014, Chem. Sci., 5, 3246, 10.1039/C4SC01239A

Ungur, 2011, Phys. Chem. Chem. Phys., 13, 20086, 10.1039/c1cp22689d

Liu, 2015, Sci. Rep., 5, 16621, 10.1038/srep16621

Sun, 2016, Chem. Sci., 7, 684, 10.1039/C5SC02986D

Liu, 2014, Angew. Chem., Int. Ed., 53, 12966, 10.1002/anie.201407799

Liu, 2013, Chem. Sci., 4, 3310, 10.1039/c3sc50843a

Zadrozny, 2013, Nat. Chem., 5, 577, 10.1038/nchem.1630

Zadrozny, 2013, Chem. Sci., 4, 125, 10.1039/C2SC20801F

Chilton, 2015, Chem. Commun., 51, 101, 10.1039/C4CC08312A

Zhang, 2014, J. Am. Chem. Soc., 136, 4484, 10.1021/ja500793x

Murugavel, 2003, New J. Chem., 27, 968, 10.1039/B300035D

Le Roy, 2014, J. Am. Chem. Soc., 136, 8003, 10.1021/ja5022552

Habib, 2011, J. Am. Chem. Soc., 133, 8830, 10.1021/ja2017009

Zeng, 2005, Angew. Chem., Int. Ed., 44, 3079, 10.1002/anie.200462463

Miyasaka, 1996, J. Am. Chem. Soc., 118, 981, 10.1021/ja952706c

Aharen, 2013, Dalton Trans., 42, 7795, 10.1039/c3dt33000a

Pedersen, 2014, Chem. Sci., 5, 1650, 10.1039/C3SC53044B

Meihaus, 2013, J. Am. Chem. Soc., 135, 17952, 10.1021/ja4094814

Branzoli, 2009, J. Am. Chem. Soc., 131, 4387, 10.1021/ja808649g

Gonidec, 2012, Dalton Trans., 41, 13632, 10.1039/c2dt31171b

Ishikawa, 2004, Inorg. Chem., 43, 5498, 10.1021/ic049348b

Takamatsu, 2007, Inorg. Chem., 46, 7250, 10.1021/ic700954t

Gonidec, 2010, Angew. Chem., Int. Ed., 49, 1623, 10.1002/anie.200905007

Pugh, 2015, Nat Commun, 6, 7492, 10.1038/ncomms8492

Yi, 2012, Chem.–Eur. J., 18, 11379, 10.1002/chem.201201167

Tuna, 2012, Angew. Chem., Int. Ed., 51, 6976, 10.1002/anie.201202497

Meihaus, 2011, Inorg. Chem., 50, 8484, 10.1021/ic201078r

Chibotaru, 2008, Angew. Chem., Int. Ed., 47, 4126, 10.1002/anie.200800283

Mondal, 2012, Angew. Chem., Int. Ed., 51, 7550, 10.1002/anie.201201478

Singh, 2014, Chem. Commun., 50, 15513, 10.1039/C4CC05522E

Das, 2015, Chem. Commun., 51, 6137, 10.1039/C4CC09523E

Singh, 2014, Inorg. Chem., 53, 10835, 10.1021/ic500772f

L. Ungur and L. F.Chibotaru, in Lanthanides and Actinides in Molecular Magnetism, ed. R. Layfield and M. Murugesu, Wiley, New Jersey, 2015, ch. 6, pp. 153–184

Aquilante, 2010, J. Comput. Chem., 31, 224, 10.1002/jcc.21318

L. Chibotaru and L.Ungur, The computer programs SINGLE_ANISO and POLY_ANISO, University of Leuven, 2006

Lines, 1971, J. Chem. Phys., 55, 2977, 10.1063/1.1676524

Chen, 2016, J. Am. Chem. Soc., 138, 2829, 10.1021/jacs.5b13584

Liu, 2016, J. Am. Chem. Soc., 138, 5441, 10.1021/jacs.6b02638

W. L. F. Armarego and D. D.Perrin, Purification of laboratory chemicals, Butterworth Heinemann, Oxford, Boston, 1996

CrystalClear, Version-SM Expert 2.0 r4, 2009 and CrystalStructure, Version 4.0, Rigaku, 2010, Rigaku Americas and Rigaku, The Woodlands, Texas, USA and Rigaku Corporation, Tokyo, Japan

Altomare, 1999, J. Appl. Crystallogr., 32, 115, 10.1107/S0021889898007717

Farrugia, 2012, J. Appl. Crystallogr., 45, 849, 10.1107/S0021889812029111

Sheldrick, 2015, Acta Crystallogr., Sect. C: Struct. Chem., 71, 3, 10.1107/S2053229614024218

Veryazov, 2004, Int. J. Quantum Chem., 100, 626, 10.1002/qua.20166

Duncan, 2009, J. Am. Chem. Soc., 131, 2416, 10.1021/ja900300h

Karlström, 2003, Comput. Mater. Sci., 28, 222, 10.1016/S0927-0256(03)00109-5

Stephens, 1994, J. Phys. Chem., 98, 11623, 10.1021/j100096a001

Becke, 1993, J. Chem. Phys., 98, 5648, 10.1063/1.464913

Becke, 1988, Phys. Rev. A, 38, 3098, 10.1103/PhysRevA.38.3098

Lee, 1988, Phys. Rev. B: Condens. Matter Mater. Phys., 37, 785, 10.1103/PhysRevB.37.785

Cundari, 1993, J. Chem. Phys., 98, 5555, 10.1063/1.464902

Bergner, 1993, Mol. Phys., 80, 1431, 10.1080/00268979300103121

Schäfer, 1994, J. Chem. Phys., 100, 5829, 10.1063/1.467146