An advanced precision analysis of the SM vacuum stability
Tóm tắt
The talk is devoted to the problem of stability of the Standard Model vacuum. The effective potential for the Higgs field, which can potentialy exhibit additional, deeper minimum, is considered as a convenient tool for addressing the problem. Different methods and approximations used to calculate the potential are considered. Special attention is paid to the renomalization-group approach that allows one to carry out three-loop analysis of the problem. By means of an explicit gauge-independent procedure the absolute stability bounds on the observed Higgs and top-quark masses are derived. The importance of high-order corrections is demonstrated. In addition, potential metastablity of the SM is discussed together with modifications of the analysis due to some New Physics.
Tài liệu tham khảo
T. Hambye and K. Riesselmann, “Matching conditions and Higgs mass upper bounds revisited”, Phys. Rev. D 55, 7255–7262 (1997).
S. R. Coleman and E. J. Weinberg, “Radiative corrections as the origin of spontaneous symmetry breaking”, Phys. Rev. D 7, 1888–1910 (1973).
R. Jackiw, “Functional evaluation of the effective potential”, Phys. Rev. D 9, 1686 (1974).
N. V. Krasnikov, “Restriction of the fermion mass in gauge theories of weak and electromagnetic interactions”, Yad. Fiz. 28, 549–551 (1978).
N. Nielsen, “On the gauge dependence of spontaneous symmetry breaking in gauge theories”, Nucl. Phys. B 101, 173 (1975).
C. Ford, I. Jack, and D. Jones, “The standard model effective potential at two loops”, Nucl. Phys. B 387, 373–390 (1992).
C. Froggatt and H. B. Nielsen, “Standard model criticality prediction: Top mass 173 ± 5-GeV and Higgs mass 135 ± 9-GeV”, Phys. Lett. B 368, 96–102 (1996).
S. P. Martin, “Two loop effective potential for a general renormalizable theory and softly broken supersymmetry”, Phys. Rev. D 65, 116003 (2002).
S. P. Martin, “Three-loop Standard Model effective potential at leading order in strong and top Yukawa couplings”, Phys. Rev. D 89 (1), 013003 (2014)
S. P. Martin, “Four-loop Standard Model effective potential at leading order in QCD”, Phys. Rev. D 92 (5), 054029 (2015).
L. N. Mihaila, J. Salomon, and M. Steinhauser, “Gauge coupling beta functions in the Standard Model to three loops”, Phys. Rev. Lett. 108, 151602 (2012)
A. Bednyakov, A. Pikelner, and V. Velizhanin, “Yukawa coupling beta-functions in the Standard Model at three loops”, Phys. Lett. B 722, 336–340 (2013)
K. Chetyrkin and M. Zoller, “β-function for the Higgs self-interaction in the Standard Model at three-loop level”, JHEP 1304, 091 (2013).
A. V. Bednyakov and A. F. Pikelner, “Four-loop strong coupling beta-function in the Standard Model”, Phys.Lett. B762 (2016) 151–156, https://inspirehep. net/record/1387530
M. F. Zoller, “Top-Yukawa effects on the -function of the strong coupling in the SM at four-loop level”, JHEP 02, 095 (2016)
K. G. Chetyrkin and M. F. Zoller, “Leading QCDinduced four-loop contributions to the β-function of the Higgs self-coupling in the SM and vacuum stability”, JHEP 1606(2016) 175, https://inspirehep.net/record/1441223.
A. V. Bednyakov, B. A. Kniehl, A. F. Pikelner, and O. L. Veretin, “Stability of the electroweak vacuum: Gauge independence and advanced precision”, Phys. Rev. Lett. 115 (20), 201802 (2015).
F. Jegerlehner, M. Y. Kalmykov, and B. A. Kniehl, “On the difference between the pole and the MS-bar masses of the top quark at the electroweak scale”, Phys. Lett. B 722, 123–129 (2013)
F. Jegerlehner, M. Y. Kalmykov, and B. A. Kniehl, “About the EW contribution to the relation between pole and MS-masses of the top-quark in the Standard Model”, 2013, arXiv:1307.4226 [hep-ph].
S. Actis, A. Ferroglia, M. Passera, and G. Passarino, “Two-loop renormalization in the Standard Model, Part I: Prolegomena”, Nucl. Phys. B 777, 1–34 (2007).
R. Hempfling and B. A. Kniehl, “On the relation between the fermion pole mass and MS Yukawa coupling in the Standard Model”, Phys. Rev. D 51, 1386–1394 (1995).
B. A. Kniehl and O. L. Veretin, “Two-loop electroweak threshold corrections to the bottom and top Yukawa couplings”, Nucl. Phys. B 885, 459 (2014).
B. A. Kniehl, A. F. Pikelner, and O. L. Veretin, “A C++ library for the matching and running of the Standard Model parameters”, Comput. Phys. Commun. 206, 84–96 (2016).
G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, and A. Strumia, “Higgs mass and vacuum stability in the Standard Model at NNLO”, JHEP 1208, 098 (2012)
D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio, and A. Strumia, “Investigating the near-criticality of the Higgs boson”, JHEP 1312, 089 (2013).
K. Olive et al., “Particle data Group Collaboration, Review of particle physics”, Chin. Phys. C 38, 090001 (2014).
A. Andreassen, W. Frost, and M. D. Schwartz, “Consistent use of the Standard Model effective potential”, Phys. Rev. Lett. 113 (24), 241801 (2014).
J. R. Espinosa, G. F. Giudice, E. Morgante, A. Riotto, L. Senatore, A. Strumia, and N. Tetradis, “The cosmological Higgstory of the vacuum instability”, JHEP 09, 174 (2015).
J. R. Espinosa, “Vacuum stability and the Higgs boson”, PoS LATTICE2013 (2014), p. 010.
I. Yu. Kobzarev, L. B. Okun, and M. B. Voloshin, “Bubbles in metastable vacuum”, Sov. J. Nucl. Phys. 20, 644–646 (1975).
A. Andreassen, D. Farhi, W. Frost, and M. D. Schwartz, “Precision decay rate calculations in quantum field theory” (2016), arXiv:Phys.Rev. D95 (2017) no. 8, 085011, https://inspirehep.net/record/1449996.
A. Arbey et al., “Physics at the e+e– linear collider”, Eur. Phys. J. C 75 (8), 371 (2015).
J. Kieseler, K. Lipka, and S. O. Moch, “Calibration of the top-quark Monte Carlo mass”, Phys. Rev. Lett. 116 (16), 162001 (2016).
F. Bezrukov and M. Shaposhnikov, “Why should we care about the top quark Yukawa coupling?” JETP 147, 3 (2015).
A. Eichhorn, H. Gies, J. Jaeckel, T. Plehn, M. M. Scherer, and R. Sondenheimer, “The Higgs mass and the scale of new physics”, JHEP 04, 022 (2015).
P. Burda, R. Gregory, and I. Moss, “Gravity and the stability of the Higgs vacuum”, Phys. Rev. Lett. 115, 071303 (2015).
L. Di Luzio, G. Isidori, and G. Ridolfi, “Stability of the electroweak ground state in the Standard Model and its extensions”, Phys. Lett. B 753, 150–160 (2016).
L. V. Laperashvili, H. B. Nielsen, and C. R. Das, “New results at LHC confirming the vacuum stability and Multiple Point Principle”, Int. J. Mod. Phys. A 31 (08), 1650029 (2016).
F. Bezrukov, J. Rubio, and M. Shaposhnikov, “Living beyond the edge: Higgs inflation and vacuum metastability”, Phys. Rev. D 92 (8), 083512 (2015).