An adaptive splitting algorithm for the sum of two generalized monotone operators and one cocoercive operator
Tóm tắt
Từ khóa
Tài liệu tham khảo
Attouch, H., Peypouquet, J., Redont, P.: Backward-forward algorithms for structured monotone inclusions in Hilbert spaces. J. Math. Anal. Appl. 457, 1095–1117 (2018)
Bartz, S., Campoy, R., Phan, H.M.: Demiclosedness principles for generalized nonexpansive mappings. J. Optim. Theory Appl. 186(3), 759–778 (2020)
Bartz, S., Campoy, R., Phan, H.M.: An adaptive alternating directions method of multipliers (2021). arXiv:2103.07159. preprint
Bartz, S., Dao, M.N., Phan, H.M.: Conical averagedness and convergence analysis of fixed point algorithms. J. Glob. Optim. (2021). https://doi.org/10.1007/s10898-021-01057-4
Bauschke, H.H.: New demiclosedness principles for (firmly) nonexpansive operators. In: Bailey, D.H., Bauschke, H.H., Borwein, P., Garvan, F., Théra, M., Vanderwerff, J.D., Wolkowicz, H. (eds.) Computational and Analytical Mathematics, pp. 19–28. Springer, New York (2013)
Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, Cham (2017)
Bauschke, H.H., Moursi, W.M., Wang, X.: Generalized monotone operators and their averaged resolvents. Math. Program. Ser. B, 189, 55–74 (2021)
Briceño-Arias, L.M.: Forward-Douglas–Rachford splitting and forward-partial inverse method for solving monotone inclusions. Optimization 64(5), 1239–1261 (2015)
Browder, F.E.: Semicontractive and semiaccretive nonlinear mappings in Banach spaces. Bull. Am. Math. Soc. 74, 660–665 (1968)
Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2011)
Dao, M.N., Phan, H.M.: Adaptive Douglas–Rachford splitting algorithm for the sum of two operators. SIAM J. Optim. 29(4), 2697–2724 (2019)
Dao, M.N., Phan, H.M.: Computing the resolvent of the sum of operators with application to best approximation problems. Optim. Lett. 14(5), 1193–1205 (2020)
Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications. Set-Valued Var. Anal. 25(4), 829–858 (2017)
Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)
Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)
Raguet, H.: A note on the forward-Douglas–Rachford splitting for monotone inclusion and convex optimization. Optim. Lett. 13, 717–740 (2019)