An adaptive pruning algorithm for the discrete L-curve criterion

Journal of Computational and Applied Mathematics - Tập 198 - Trang 483-492 - 2007
Per Christian Hansen1, Toke Koldborg Jensen1, Giuseppe Rodriguez2
1Informatics and Mathematical Modelling, Technical University of Denmark, Building 321, DK-2800 Lyngby, Denmark
2Dipartimento di Matematica e Informatica, Università di Cagliari, viale Merello 92, I-09123 Cagliari, Italy

Tài liệu tham khảo

Belge, 2002, Efficient determination of multiple regularization parameters in a generalized L-curve framework, Inverse Problems, 18, 1161, 10.1088/0266-5611/18/4/314 Castellanos, 2002, The triangle method for finding the corner of the L-curve, Appl. Numer. Math., 43, 359, 10.1016/S0168-9274(01)00179-9 Hanke, 1996, Limitations of the L-curve method for ill-posed problems, BIT, 36, 287, 10.1007/BF01731984 Hansen, 1994, Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems, Numer. Algorithms, 6, 1, 10.1007/BF02149761 Hansen, 1998 Hansen, 2001, The L-curve and its use in the numerical treatment of inverse problems; invited chapter, 119 Hansen, 2002, Deconvolution and regularization with Toeplitz matrices, Numer. Algorithms, 29, 323, 10.1023/A:1015222829062 Hansen, 1993, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput., 14, 1487, 10.1137/0914086 Rodriguez, 2005, An algorithm for estimating the optimal regularization parameter by the L-curve, Rend. Mat., 25, 69 Vogel, 1996, Non-convergence of the L-curve regularization parameter selection method, Inverse Problems, 12, 535, 10.1088/0266-5611/12/4/013