An adaptive method for image restoration based on high-order total variation and inverse gradient

Signal, Image and Video Processing - Tập 14 Số 6 - Trang 1189-1197 - 2020
Dang N. H. Thanh1, V. B. Surya Prasath2, Le Minh Hieu3, С. Д. Двоенко4
1Department of Information Systems, School of Business Information Technology, University of Economics Ho Chi Minh city, Ho Chi Minh city, Vietnam
2Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
3University of Economics, The University of Danang, Danang, Vietnam
4Department of Information Security, Institute of Applied Mathematics and Computer Science, Tula State University, Tula, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cheng, J., Gao, Y., Guo, B., Zuo, W.: Image restoration using spatially variant hyper-Laplacian prior. Signal Image Video Process 13(1), 155–162 (2019)

Prasath, V.B.S., Vorotnikov, D., Pelapur, R., Jose, S., Seetharaman, G., Palaniappan, K.: Multiscale Tikhonov-total variation image restoration using spatially varying edge coherence exponent. IEEE Trans. Image Process. 24(12), 5220–5235 (2015)

Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet and Stochastic Methods. SIAM, New York (2005)

Thanh, D.N.H., Dvoenko, S.: A variational method to remove the combination of poisson and Gaussian noises. In: 5th International Workshop on Image Mining: Theory and Applications, pp. 38–45, Germany (2015)

Shi, Y., Wang, K., Chen, C., Xu, L., Lin, L.: Structure-preserving image super-resolution via contextualized multitask learning. IEEE Trans. Multimedia. 19(12), 2804–2815 (2017). https://doi.org/10.1109/TMM.2017.2711263

Liu, L., Pang, Z.-F., Duan, Y.: Retinex based on exponent-type total variation scheme. Inverse Prob. Imaging. 12(5), 1199–1217 (2018). https://doi.org/10.3934/ipi.2018050

Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image restoration. In: Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake city (2018). https://doi.org/10.1109/CVPRW.2018.00121

Fu, B., Li, Y., Wang, X.-H., Ren, Y.-G.: Image super-resolution using TV priori guided convolutional network. Pattern Recogn. Lett. 125, 780–784 (2019). https://doi.org/10.1016/j.patrec.2019.06.022

Thanh, D.N.H., Prasath, V.B.S., Hieu, L.M.: A review on CT and X-ray images denoising methods. Informatica 43(2), 151–159 (2019)

Thanh, D.N.H., Dvoenko, S.: Image noise removal based on total variation. Comput. Opt. 39(4), 564–571 (2015)

Prasath, V.B.S.: Quantum noise removal in X-ray images with adaptive total variation regularization. Informatica 28(3), 505–515 (2017)

Thanh, D.N.H., Dvoenko, S.: A method of total variation to remove the mixed Poisson–Gaussian noise. Pattern Rec. Image Ana. 26(2), 285–293 (2016)

Mamaev, N.V., Yurin, D.V., Krylov, A.S.: Finding the parameters of a nonlinear diffusion denoising method by ridge analysis. Comput. Math. Model. 29, 334–343 (2018). https://doi.org/10.1007/s10598-018-9413-6

Dovganich, A.A., Krylov, A.S.: A nonlocal image denoising algorithm using the structural similarity metric. Program. Comput. Soft. 45, 141–146 (2019). https://doi.org/10.1134/S0361768819040029

Pang, Z.-F., Zhang, H.-L., Luo, S., Zeng, T.: Image denoising based on the adaptive weighted TVp regularization. Signal Process. 167, 107325 (2020). https://doi.org/10.1016/j.sigpro.2019.107325

Teoh, S.H., Ibrahim, H.: Robust algorithm for broad impulse noise removal utilizing intensity distance and intensity height methodologies. SIViP 8, 223–242 (2014). https://doi.org/10.1007/s11760-013-0538-y

Erkan, U., Enginoglu, S., Thanh, D.N.H., Hieu, L.M.: Adaptive frequency median filter for the salt-and-pepper denoising problem. IET Image Process. (2019). https://doi.org/10.1049/iet-ipr.2019.0398

Chen, Y., et al.: Structure-adaptive fuzzy estimation for random-valued impulse noise suppression. IEEE. Trans. Circ. Syst. Video Technol. 28(2), 414–427 (2018). https://doi.org/10.1109/TCSVT.2016.2615444

Hsieh, P.-W., Shao, P.-C., Yang, S.-Y.: A regularization model with adaptive diffusivity for variational image denoising. Signal Process. 149, 214–228 (2018). https://doi.org/10.1016/j.sigpro.2017.12.011

Erkan, U., Thanh, D.N.H., Hieu, L.M., Enginoglu, S.: An iterative mean filter for image denoising. IEEE Access. 7, 167847–167859 (2019). https://doi.org/10.1109/ACCESS.2019.2953924

Almeida, M., Almeida, L.: Blind and semi-blind deblurring of natural images. IEEE Trans. Image Process. 19(1), 36–52 (2009)

Abbass, M., Kim, H., Abdelwahab, S., Haggag, S., El-Rabaie, E., Dessouky, M., El-Samie, F.: Image deconvolution using homomorphic technique. Signal Image Video Process. 13(4), 703–709 (2019)

Thanh, D.N.H., Prasath, V.B.S., Son, N.V., Hieu, L.M.: An adaptive image inpainting method based on the modified Mumford–Shah model and multiscale parameter estimation. Comput. Opt. 42(6), 251–257 (2018)

Mirkamali, M., Nagabhushan, P.: Object removal by depth-wise image inpainting. Signal Image Video Process. 9(8), 1785–1794 (2015)

Wang, W., Yuan, X.: Recent advances in image dehazing. IEEE/CAA J Automatica Sinica 4(3), 410–436 (2017)

Grigoras, R., Ciocoiu, I.B.: Comparative analysis of deraining algorithms. In: International Symposium on Signals, Circuits and Systems, Romania (2017)

Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1990)

Papafitsoros, K., Schönlieb, C.: A combined first and second order variational approach for image reconstruction. J Math. Imag. Vis. 48(2), 308–338 (2014)

Arbelaez, P., Fowlkes, C., Martin, D.: The Berkeley Segmentation Dataset (BSDS). https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/. Accessed 10/12/2018

Chan, R., Liang, H., Wei, S., Nikolova, M., Tai, X.: High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. Inverse Prob. Imag. 9(1), 55–77 (2015)

Lu, W., Duan, J., Qiu, Z., Pan, Z., Liu, R.W., Bai, L.: Implementation of high-order variational models made easy for image processing. Math. Meth. Appl. Sci. 39(14), 4208–4233 (2016)

Thanh, D.N.H., Thanh, L.T., Hien, N.N., Prasath, V.B.S.: Adaptive Total Variation L1 Regularization for Salt and Pepper Image Denoising. Optik-Int. J. Light Electron Opt. (2020). https://doi.org/10.1016/j.ijleo.2019.163677

Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

Wang, Z., Simoncelli, E., Bovik, A.: Multi-scale structural similarity for image quality assessment. In: 37th IEEE Asilomar Conference on Signals, Systems and Computers, USA (2003)

Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

Gu, K., Li, L., Lu, H., Min, X., Lin, W.: A fast reliable image quality predictor by fusing micro-and macro-structures. IEEE Trans. Ind. Electron. 64(5), 3903–3912 (2017)

Gu, K., Zhai, G., Lin, W., Yang, X., Zhang, W.: No-reference image sharpness assessment in autoregressive parameter space. IEEE Trans. Image Process. 24(10), 3218–3231 (2015)

Gu, K., Wang, S., Yang, H., Lin, W., Zhai, G., Yang, X., Zhang, W.: Saliency-guided quality assessment of screen content images. IEEE Trans. Multimed. 18(6), 1098–1110 (2016)

Gu, K., Qiao, J., Min, X., Yue, G., Lin, W., Thalmann, D.: Evaluating quality of screen content images via structural variation analysis. IEEE Trans. Vis. Comput. Graph. 24(10), 2689–2701 (2017)

Lu, W., Duan, J.: Higher order variational models (HOVM) for image processing. https://github.com/j-duan/HOVM. Accessed 10/12/2018