An adaptive method for image restoration based on high-order total variation and inverse gradient
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cheng, J., Gao, Y., Guo, B., Zuo, W.: Image restoration using spatially variant hyper-Laplacian prior. Signal Image Video Process 13(1), 155–162 (2019)
Prasath, V.B.S., Vorotnikov, D., Pelapur, R., Jose, S., Seetharaman, G., Palaniappan, K.: Multiscale Tikhonov-total variation image restoration using spatially varying edge coherence exponent. IEEE Trans. Image Process. 24(12), 5220–5235 (2015)
Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet and Stochastic Methods. SIAM, New York (2005)
Thanh, D.N.H., Dvoenko, S.: A variational method to remove the combination of poisson and Gaussian noises. In: 5th International Workshop on Image Mining: Theory and Applications, pp. 38–45, Germany (2015)
Shi, Y., Wang, K., Chen, C., Xu, L., Lin, L.: Structure-preserving image super-resolution via contextualized multitask learning. IEEE Trans. Multimedia. 19(12), 2804–2815 (2017). https://doi.org/10.1109/TMM.2017.2711263
Liu, L., Pang, Z.-F., Duan, Y.: Retinex based on exponent-type total variation scheme. Inverse Prob. Imaging. 12(5), 1199–1217 (2018). https://doi.org/10.3934/ipi.2018050
Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image restoration. In: Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake city (2018). https://doi.org/10.1109/CVPRW.2018.00121
Fu, B., Li, Y., Wang, X.-H., Ren, Y.-G.: Image super-resolution using TV priori guided convolutional network. Pattern Recogn. Lett. 125, 780–784 (2019). https://doi.org/10.1016/j.patrec.2019.06.022
Thanh, D.N.H., Prasath, V.B.S., Hieu, L.M.: A review on CT and X-ray images denoising methods. Informatica 43(2), 151–159 (2019)
Thanh, D.N.H., Dvoenko, S.: Image noise removal based on total variation. Comput. Opt. 39(4), 564–571 (2015)
Prasath, V.B.S.: Quantum noise removal in X-ray images with adaptive total variation regularization. Informatica 28(3), 505–515 (2017)
Thanh, D.N.H., Dvoenko, S.: A method of total variation to remove the mixed Poisson–Gaussian noise. Pattern Rec. Image Ana. 26(2), 285–293 (2016)
Mamaev, N.V., Yurin, D.V., Krylov, A.S.: Finding the parameters of a nonlinear diffusion denoising method by ridge analysis. Comput. Math. Model. 29, 334–343 (2018). https://doi.org/10.1007/s10598-018-9413-6
Dovganich, A.A., Krylov, A.S.: A nonlocal image denoising algorithm using the structural similarity metric. Program. Comput. Soft. 45, 141–146 (2019). https://doi.org/10.1134/S0361768819040029
Pang, Z.-F., Zhang, H.-L., Luo, S., Zeng, T.: Image denoising based on the adaptive weighted TVp regularization. Signal Process. 167, 107325 (2020). https://doi.org/10.1016/j.sigpro.2019.107325
Teoh, S.H., Ibrahim, H.: Robust algorithm for broad impulse noise removal utilizing intensity distance and intensity height methodologies. SIViP 8, 223–242 (2014). https://doi.org/10.1007/s11760-013-0538-y
Erkan, U., Enginoglu, S., Thanh, D.N.H., Hieu, L.M.: Adaptive frequency median filter for the salt-and-pepper denoising problem. IET Image Process. (2019). https://doi.org/10.1049/iet-ipr.2019.0398
Chen, Y., et al.: Structure-adaptive fuzzy estimation for random-valued impulse noise suppression. IEEE. Trans. Circ. Syst. Video Technol. 28(2), 414–427 (2018). https://doi.org/10.1109/TCSVT.2016.2615444
Hsieh, P.-W., Shao, P.-C., Yang, S.-Y.: A regularization model with adaptive diffusivity for variational image denoising. Signal Process. 149, 214–228 (2018). https://doi.org/10.1016/j.sigpro.2017.12.011
Erkan, U., Thanh, D.N.H., Hieu, L.M., Enginoglu, S.: An iterative mean filter for image denoising. IEEE Access. 7, 167847–167859 (2019). https://doi.org/10.1109/ACCESS.2019.2953924
Almeida, M., Almeida, L.: Blind and semi-blind deblurring of natural images. IEEE Trans. Image Process. 19(1), 36–52 (2009)
Abbass, M., Kim, H., Abdelwahab, S., Haggag, S., El-Rabaie, E., Dessouky, M., El-Samie, F.: Image deconvolution using homomorphic technique. Signal Image Video Process. 13(4), 703–709 (2019)
Thanh, D.N.H., Prasath, V.B.S., Son, N.V., Hieu, L.M.: An adaptive image inpainting method based on the modified Mumford–Shah model and multiscale parameter estimation. Comput. Opt. 42(6), 251–257 (2018)
Mirkamali, M., Nagabhushan, P.: Object removal by depth-wise image inpainting. Signal Image Video Process. 9(8), 1785–1794 (2015)
Wang, W., Yuan, X.: Recent advances in image dehazing. IEEE/CAA J Automatica Sinica 4(3), 410–436 (2017)
Grigoras, R., Ciocoiu, I.B.: Comparative analysis of deraining algorithms. In: International Symposium on Signals, Circuits and Systems, Romania (2017)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1990)
Papafitsoros, K., Schönlieb, C.: A combined first and second order variational approach for image reconstruction. J Math. Imag. Vis. 48(2), 308–338 (2014)
Arbelaez, P., Fowlkes, C., Martin, D.: The Berkeley Segmentation Dataset (BSDS). https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/. Accessed 10/12/2018
Chan, R., Liang, H., Wei, S., Nikolova, M., Tai, X.: High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. Inverse Prob. Imag. 9(1), 55–77 (2015)
Lu, W., Duan, J., Qiu, Z., Pan, Z., Liu, R.W., Bai, L.: Implementation of high-order variational models made easy for image processing. Math. Meth. Appl. Sci. 39(14), 4208–4233 (2016)
Thanh, D.N.H., Thanh, L.T., Hien, N.N., Prasath, V.B.S.: Adaptive Total Variation L1 Regularization for Salt and Pepper Image Denoising. Optik-Int. J. Light Electron Opt. (2020). https://doi.org/10.1016/j.ijleo.2019.163677
Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wang, Z., Simoncelli, E., Bovik, A.: Multi-scale structural similarity for image quality assessment. In: 37th IEEE Asilomar Conference on Signals, Systems and Computers, USA (2003)
Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)
Gu, K., Li, L., Lu, H., Min, X., Lin, W.: A fast reliable image quality predictor by fusing micro-and macro-structures. IEEE Trans. Ind. Electron. 64(5), 3903–3912 (2017)
Gu, K., Zhai, G., Lin, W., Yang, X., Zhang, W.: No-reference image sharpness assessment in autoregressive parameter space. IEEE Trans. Image Process. 24(10), 3218–3231 (2015)
Gu, K., Wang, S., Yang, H., Lin, W., Zhai, G., Yang, X., Zhang, W.: Saliency-guided quality assessment of screen content images. IEEE Trans. Multimed. 18(6), 1098–1110 (2016)
Gu, K., Qiao, J., Min, X., Yue, G., Lin, W., Thalmann, D.: Evaluating quality of screen content images via structural variation analysis. IEEE Trans. Vis. Comput. Graph. 24(10), 2689–2701 (2017)
Lu, W., Duan, J.: Higher order variational models (HOVM) for image processing. https://github.com/j-duan/HOVM. Accessed 10/12/2018