An adaptive cell-based domain integration method for treatment of domain integrals in 3D boundary element method for potential and elasticity problems

Acta Mechanica Solida Sinica - Tập 30 - Trang 99-111 - 2017
Qiao Wang1, Wei Zhou1, Yonggang Cheng1, Gang Ma1, Xiaolin Chang1, Qiang Huang1
1State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

Tài liệu tham khảo

Jaswon, 1963, Integral equation methods in potential theory. I, 275, 23 Jaswon, 1977 Chati, 1999, The boundary node method for three‐dimensional linear elasticity, Int. J. Numer. Methods Eng., 46, 1163, 10.1002/(SICI)1097-0207(19991120)46:8<1163::AID-NME742>3.0.CO;2-Y Lv, 2013, Boundary node method based on parametric space for 2D elasticity, Eng. Anal. Boundary Elem., 37, 659, 10.1016/j.enganabound.2013.02.002 Li, 2009, A Galerkin boundary node method and its convergence analysis, J. Comput. Appl. Math., 230, 314, 10.1016/j.cam.2008.12.003 Miao, 2005, An improved hybrid boundary node method in two-dimensional solids, Acta Mech. Solida Sin., 18, 307 Miao, 2006, Meshless analysis for three-dimensional elasticity with singular hybrid boundary node method, Appl. Math. Mech., 27, 673, 10.1007/s10483-006-0514-z Miao, 2010, Multi-domain hybrid boundary node method for evaluating top-down crack in Asphalt pavements, Eng. Anal. Boundary Elem., 34, 755, 10.1016/j.enganabound.2010.04.002 Miao, 2012, Dual hybrid boundary node method for solving transient dynamic fracture problems, Comput. Model. Eng. Sci. (CMES), 85, 481 Zhang, 2009, A boundary face method for potential problems in three dimensions, Int. J. Numer. Methods Eng., 80, 320, 10.1002/nme.2633 Zhou, 2011, Shape variable radial basis function and its application in dual reciprocity boundary face method, Eng. Anal. Boundary Elem., 35, 244, 10.1016/j.enganabound.2010.08.009 Lv, 2013, A Kriging interpolation-based boundary face method for 3D potential problems, Eng. Anal. Boundary Elem., 37, 812, 10.1016/j.enganabound.2013.02.006 Hsiao, 2003, The evaluation of domain integrals in complex multiply-connected three-dimensional geometries for boundary element methods, Comput. Mech., 32, 226, 10.1007/s00466-003-0479-3 Nardini, 1983, A new approach to free vibration analysis using boundary elements, Appl. Math. Model., 7, 157, 10.1016/0307-904X(83)90003-3 Schaback, 1995, Error estimates and condition numbers for radial basis function interpolation, Adv. Comput. Math., 3, 251, 10.1007/BF02432002 Neves, 1991, The multiple reciprocity boundary element method in elasticity: a new approach for transforming domain integrals to the boundary, Int. J. Numer. Methods Eng., 31, 709, 10.1002/nme.1620310406 Ahmad, 1986, Free vibration analysis by BEM using particular integrals, J. Eng. Mech., 112, 682, 10.1061/(ASCE)0733-9399(1986)112:7(682) Pan, 2003, Treatment of body forces in single-domain boundary integral equation method for anisotropic elasticity, 14, 95 Pan, 1996, A 3-D boundary element formulation of anisotropic elasticity with gravity, Appl. Math. Model., 20, 114, 10.1016/0307-904X(95)00092-X Gao, 2002, The radial integration method for evaluation of domain integrals with boundary-only discretization, Eng. Anal. Boundary Elem., 26, 905, 10.1016/S0955-7997(02)00039-5 Gao, 2005, Evaluation of regular and singular domain integrals with boundary-only discretization—theory and Fortran code, J. Comput. Appl. Math., 175, 265, 10.1016/j.cam.2004.05.012 Nintcheu Fata, 2012, Treatment of domain integrals in boundary element methods, Appl. Numer. Math., 62, 720, 10.1016/j.apnum.2010.07.003 Hematiyan, 2007, A general method for evaluation of 2D and 3D domain integrals without domain discretization and its application in BEM, Comput. Mech., 39, 509, 10.1007/s00466-006-0050-0 Hematiyan, 2013, Efficient evaluation of weakly/strongly singular domain integrals in the BEM using a singular nodal integration method, Eng. Anal. Boundary Elem., 37, 691, 10.1016/j.enganabound.2013.02.004 Sedaghatjoo, 2012, Calculation of domain integrals of two dimensional boundary element method, Eng. Anal. Boundary Elem., 36, 1917, 10.1016/j.enganabound.2012.07.013 Dallner, 1993, Efficient evaluation of volume integrals in the boundary element method, Comput. Methods Appl. Mech. Eng., 109, 95, 10.1016/0045-7825(93)90226-N Ingber, 2001, A comparison of domain integral evaluation techniques for boundary element methods, Int. J. Numer. Methods Eng., 52, 417, 10.1002/nme.217 Dong, 2015, Accurate numerical evaluation of domain integrals in 3D boundary element method for transient heat conduction problem, Eng. Anal. Boundary Elem., 60, 89, 10.1016/j.enganabound.2015.02.004 Dong, 2015, A general algorithm for the numerical evaluation of domain integrals in 3D boundary element method for transient heat conduction, Eng. Anal. Boundary Elem., 51, 30, 10.1016/j.enganabound.2014.10.010 Cheng, 1999, A fast adaptive multipole algorithm in three dimensions, J. Comput. Phys., 155, 468, 10.1006/jcph.1999.6355 Fu, 1998, A fast solution method for three-dimensional many-particle problems of linear elasticity, Int. J. Numer. Methods Eng., 42, 1215, 10.1002/(SICI)1097-0207(19980815)42:7<1215::AID-NME406>3.0.CO;2-5 Wang, 2013, A fast multipole hybrid boundary node method for composite materials, Comput. Mech., 51, 885, 10.1007/s00466-012-0766-y Wang, 2010, The hybrid boundary node method accelerated by fast multipole expansion technique for 3D elasticity, Comput. Model. Eng. Sci., 70, 123 Wang, 2012, An O (N) fast multipole hybrid boundary node method for 3D elasticity, Comput. Mater. Continua, 28, 1 Of, 2010, Fast evaluation of volume potentials in boundary element methods, SIAM J. Sci. Comput., 32, 585, 10.1137/080744359 Ding, 2005, An accelerated surface discretization‐based BEM approach for non‐homogeneous linear problems in 3‐D complex domains, Int. J. Numer. Methods Eng., 63, 1775, 10.1002/nme.1346 Steinbach, 2014, Fast Fourier transform for efficient evaluation of Newton potential in BEM, Appl. Numer. Math., 81, 1, 10.1016/j.apnum.2014.02.010 Shiah, 2016, Analytical transformation of volume integral for the time-stepping BEM analysis of 2D transient heat conduction in anisotropic media, Eng. Anal. Boundary Elem., 64, 101, 10.1016/j.enganabound.2015.12.008 Qu, 2015, Solutions of 2D and 3D non-homogeneous potential problems by using a boundary element-collocation method, Eng. Anal. Boundary Elem., 60, 2, 10.1016/j.enganabound.2015.04.018 Telles, 1987, A self‐adaptive co‐ordinate transformation for efficient numerical evaluation of general boundary element integrals, Int. J. Numer. Methods Eng., 24, 959, 10.1002/nme.1620240509