An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis

Probabilistic Engineering Mechanics - Tập 25 Số 2 - Trang 183-197 - 2010
Géraud Blatman1,2, Bruno Sudret2,3
1EDF R&D, Département matériaux et mécanique des composants, site des Renardières, 77250 Moret-sur-Loing cedex, France
2IFMA-LaMI, Campus des Cézeaux, BP 265, 63175 Aubière cedex, France
3Phimeca Engineering S.A., Centre d’affaires du Zénith, 34 rue de Sarliève, 63800 Cournon d’Auvergne, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ghanem, 2003

Soize, 2004, Physical systems with random uncertainties: Chaos representations with arbitrary probability measure, SIAM J Sci Comput, 26, 395, 10.1137/S1064827503424505

Le Maître, 2004, Uncertainty propagation using Wiener–Haar expansions, J Comput Phys, 197, 28, 10.1016/j.jcp.2003.11.033

Matthies, 2005, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput Methods Appl Mech Eng, 194, 1295, 10.1016/j.cma.2004.05.027

Nouy, 2007, A generalized spectral decomposition technique to solve stochastic partial differential equations, Comput Methods Appl Mech Eng, 196, 4521, 10.1016/j.cma.2007.05.016

Ghiocel, 2002, Stochastic finite element analysis of seismic soil–structure interaction, J Eng Mech, 128, 66, 10.1061/(ASCE)0733-9399(2002)128:1(66)

Le Maître, 2002, A stochastic projection method for fluid flow — II. Random process, J Comput Phys, 181, 9, 10.1006/jcph.2002.7104

Choi, 2004, Polynomial chaos expansion with Latin Hypercube sampling for estimating response variability, AIAA J, 45, 1191, 10.2514/1.2220

Berveiller, 2005, Non linear non intrusive stochastic finite element method — Application to a fracture mechanics problem

Berveiller, 2006, Stochastic finite elements: A non intrusive approach by regression, Eur J Comput Mech, 15, 81, 10.3166/remn.15.81-92

Sudret, 2008, Global sensitivity analysis using polynomial chaos expansions, Reliab Eng Sys Safety, 93, 964, 10.1016/j.ress.2007.04.002

Xiu, 2005, High-order collocation methods for differential equations with random inputs, SIAM J Sci Comput, 27, 1118, 10.1137/040615201

Babus˘ka, 2007, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J Num Anal, 45, 1005, 10.1137/050645142

Gerstner, 2003, Dimension-adaptive tensor-product quadrature, Computing, 71, 65, 10.1007/s00607-003-0015-5

Ganapathysubramanian, 2007, Sparse grid collocation schemes for stochastic natural convection problems, J Comput Physics, 225, 652, 10.1016/j.jcp.2006.12.014

Ghanem, 2006, Efficient solution of stochastic systems: Application to the embankment dam problem, Struct Saf, 29, 238, 10.1016/j.strusafe.2006.07.015

Sachdeva, 2006, Hybridization of stochastic reduced basis methods with polynomial chaos expansions, Prob Eng Mech, 21, 182, 10.1016/j.probengmech.2005.09.003

Wang, 2003, Adaptive response surface method using inherited latin hypercube design points, J Mech Des, 125, 210, 10.1115/1.1561044

Stone, 1974, Cross-validatory choice and assessment of statistical predictions, J Roy Statist Soc Ser B, 36, 111

Xiu, 2002, The Wiener–Askey polynomial chaos for stochastic differential equations, J Sci Comput, 24, 619

Sudret B. Uncertainty propagation and sensitivity analysis in mechanical models — Contributions to structural reliability and stochastic spectral methods. Clermont-Ferrand (France): Habilitation à diriger des recherches. Université Blaise Pascal; 2007

Nelsen, 1999, vol. 139

Lebrun, 2009, A generalization of the Nataf transformation to distributions with elliptical copula, Prob Eng Mech, 24, 172, 10.1016/j.probengmech.2008.05.001

Lebrun, 2009, An innovating analysis of the nataf transformation from the copula viewpoint, Prob Eng Mech, 24, 312, 10.1016/j.probengmech.2008.08.001

Sklar A. Fonctions de répartition n dimensions et leurs marges. In: Publications de l’Institut de Statistique de l’Université de Paris 8. 1959. p. 229–31

Wan, 2006, Beyond Wiener–Askey expansions: Handling arbitrary PDFs, J Sci Comput, 27, 455, 10.1007/s10915-005-9038-8

Nataf, 1962, Détermination des distributions dont les marges sont données, C R Acad Sci Paris, 225, 42

Blatman, 2007, Quasi-random numbers in stochastic finite element analysis, Méc Ind, 8, 289, 10.1051/meca:2007051

Smolyak, 1963, Quadrature and interpolation formulas for tensor products of certain classes of functions, Soviet Math Dokl, 4, 240

Field, 2004, On the accuracy of the polynomial chaos approximation, Prob Eng Mech, 19, 68, 10.1016/j.probengmech.2003.11.017

Vapnik, 1995

Molinaro, 2005, Prediction error estimation: A comparison of resampling methods, Bioinformatics, 21, 3301, 10.1093/bioinformatics/bti499

Saporta, 2006

Blatman, 2008, Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach, C R Méc, 336, 518, 10.1016/j.crme.2008.02.013

2000

Liu, 1991, Optimization algorithms for structural reliability, Struct Saf, 9, 161, 10.1016/0167-4730(91)90041-7

Wei, 2007, Stuctural reliability analysis by univariate decomposition and numerical integration, Prob Eng Mech, 22, 27, 10.1016/j.probengmech.2006.05.004

Blatman G, Sudret B. Efficient computation of Sobol’ sensitivity indices using sparse polynomial chaos expansions. Reliab Eng Sys Safety 2008 (submitted for publication)

Ditlevsen, 1996