An ab-initio study of induced half metallic ferromagnetism in Hf–Nb alloy oxides
Tóm tắt
Từ khóa
Tài liệu tham khảo
E.Y. Tsymbal, I. Žutić, Spintronics Handbook, 2nd edn. (CRC Press, 2021)
S.A. Wolf, D.D. Awschalomr, R.A. Buhrman, J.M. Daughton, S.V. Molnárm, M.L. Roukesa, A.Y. Chtchelkanova, D.M. Treger Spintronics, A spin-based electronics vision for the future. Science 294, 1488–1495 (2001). https://doi.org/10.1126/science.1065389
F.J. Jedema, A.T. Flip, B.J.V. Wees, Electrical spin injection and accumulation at room temperature in an all—metal mesoscopic spin valve. Nature 410, 345–348 (2001). https://doi.org/10.1038/35066533
Y. Feng, X. Wu, J. Han, G. Gao, Robust half-metallicities and perfect spin transport properties in 2D transition metal dichlorides. J. Mater. Chem. C. 6, 4087–4094 (2018). https://doi.org/10.1039/C8TC00443A
W. Prellier, A. Fouchet, B. Mercey, Oxide-diluted magnetic semiconductors: a review of the experimental status. J. Phys. Condens. Matter 15, R1583 (2003). https://doi.org/10.1088/0953-8984/15/37/R01
S. Ali, H. Ullah, A.A. AlObaid, T.I. Al-Muhimeed, Crystal field splitting, half metallic ferromagnetism, structural, mechanical and magneto-electronic properties of spinels type structure compounds MgX2O4 (X = Fe and Co) for spintronic applications. Eur. Phys. J. Plus 136, 770 (2021). https://doi.org/10.1140/epjp/s13360-021-01737-w
M.E.A. Monir, A. Laref, Insight into the spin-polarized structural, electronic, and magnetic properties of Nd2GaO4 and Nd2InO4 compounds. Eur. Phys. J. Plus 137, 725 (2022). https://doi.org/10.1140/epjp/s13360-022-02965-4
M. Singh, H.S. Saini, J. Thakur, A.H. Reshak, M.K. Kashyap, Electronic structure, magnetism and robust half-metallicity of new quaternary Heusler alloy FeCrMnSb. J. Alloys Compd. 580, 201–204 (2013). https://doi.org/10.1016/j.jallcom.2013.05.111
K. Elphick, W. Frost, M. Samiepour, T. Kubota, K. Takanashi, S. Hiroaki, S. Mitani, A. Hirohata, Heusler alloys for spintronic devices: review on recent development and future perspectives. Sci. Technol. Adv. Mater. 22, 235–271 (2020). https://doi.org/10.1080/14686996.2020.1812364
T.I. Al-Muhimeed, G.M. Mustafa, A.A. AlObaid, A. Mera, K. Shahzadi, M.M. Al-Anazy, Q. Mahmood, Role of trivalent substitution at octahedral side on ferromagnetism and transport properties of ZnX2S4 (X = Ti, V, Cr) spinels. Eur. Phys. J. Plus 137, 299 (2022). https://doi.org/10.1140/epjp/s13360-022-02389-0
D.D. Awschalom, M.E. Flatté, Challenges for semiconductor spintronics. Nature 3, 153–159 (2007). https://doi.org/10.1038/nphys551
N. Ali, B. Singh, A.R. Vijaya, S. Lal, C.S. Yadav, K. Trarfder, S. Gosh, Ferromagnetism in Mn-doped ZnO: a joint theoretical and experimental study. J. Phys. Chem. C 125, 7734–7745 (2021). https://doi.org/10.1021/acs.jpcc.0c08407
S. Ostanin, A. Ernst, L.M. Sandratskii, P. Bruno, M. Däne, I.D. Hughes, J.B. Staunton, W. Hergert, I. Mertig, J. Kudrnovský, Mn-stabilized zirconia: from imitation diamonds to a new potential high-TC ferromagnetic spintronics material. Phys. Rev. Lett. 98, 016101 (2007). https://doi.org/10.1103/PhysRevLett.98.016101
K. Seema, R. Kumar, Effect of variation in dilute limit on electronic and magnetic properties of transition metal doped HfO2. Quantum Matter 4, 474–479 (2015). https://doi.org/10.1166/qm.2015.1220
S. Ghosh, P.M.G. Nambissan, Evidence of oxygen and Ti vacancy induced ferromagnetism in post-annealed undoped anatase TiO2 nanocrystals: a spectroscopic analysis. J. Solid State Chem. 275, 174–180 (2019). https://doi.org/10.1016/j.jssc.2019.04.010
N. Afify, G. Abbady, D. Hamad, R.F. Abdelbaki, E.S. Yousef, E.R. Shaaban, M.N. Abd-el Salam, The effective role of dilute Co on SnO2 nanoparticles: structural, optical and magnetic characterization properties for spintronics. Sens. Actuators A Phys. 331, 112984 (2021). https://doi.org/10.1016/j.sna.2021.112984
E. Albanese, A.R. Puigdollers, G. Pacchioni, Theory of ferromagnetism in reduced ZrO2−x nanoparticles. ACS Omega 3, 5301–5307 (2018). https://doi.org/10.1021/acsomega.8b00667
A.N. Ribeiro, N.S. Ferreira, Systematic study of the physical origin of ferromagnetism in CeO2−δ nanoparticles. Phys. Rev. B 95, 144430 (2017). https://doi.org/10.1103/PhysRevB.95.144430
J.M.D. Coey, M. Venkatesan, P. Stamenov, C.B. Fitzgerald, L.S. Dorneles, Magnetism in hafnium dioxide. Phys. Rev. B 72, 024450 (2005). https://doi.org/10.1103/PhysRevB.72.024450
X. Nie, D. Ma, F. Ma, K. Xu, Thermal stability, structural and electrical characteristics of the modulated HfO2/Al2O3 films fabricated by atomic layer deposition. J. Mater. Sci. 52, 11524–11536 (2017). https://doi.org/10.1007/s10853-017-1293-1
H. Jiao, X. Cheng, G. Bao, J. Han, J. Zhang, Z. Wang, M. Trubetskov, A.V. Tikhonravov, Study of HfO2/SiO2 dichroic laser mirrors with refractive index inhomogeneity. Appl. Opt. 53, A56–A61 (2014). https://doi.org/10.1364/AO.53.000A56
M.F. Al-Kuhaili, S.M.A. Durrani, E.E. Khawaja, Characterization of hafnium oxide thin films prepared by electron beam evaporation. J. Phys. D Appl. Phys. 37, 1254 (2004). https://doi.org/10.1088/0022-3727/37/8/015
E. Cianci, A. Lamperti, G. Tallarida, M. Zanuccoli, C. Fiegna, L. Lamagna, S. Losa, S. Rossini, F. Vercesi, D. Gatti, C. Wiemer, Advanced protective coatings for reflectivity enhancement by low temperature atomic layer deposition of HfO2 on Al surfaces for micromirror applications. Sens. Actuators A Phys. 282, 124–131 (2018). https://doi.org/10.1016/j.sna.2018.09.028
A. Lauria, I. Villa, M. Fasoli, M. Niederberger, A. Vedda, Multifunctional role of rare earth doping in optical materials: Nonaqueous sol-gel synthesis of stabilized cubic HfO2 luminescent nanoparticles. ACS Nano 7, 7041–7052 (2013). https://doi.org/10.1021/nn402357s
Q. Zhang, G. Chen, S. Yunoki, Surface ferromagnetism in HfO2 induced by excess oxygen. Solid State Commun. 252, 33–39 (2017). https://doi.org/10.1016/j.ssc.2017.01.008
R. Sharma, S.A. Dar, V. Srivastava, Half-metallic ferromagnetism and thermoelectric properties of vanadium doped Hf1−xVxO2 (x = 0, 0.25, 0.50, 0.75) alloys by first principles perspective. Phys. Lett. A 411, 127559 (2021). https://doi.org/10.1016/j.physleta.2021.127559
I.V. Maznichenko, S. Ostanin, A. Ernst, I. Mertig, First-principles study of manganese-stabilized hafnia. J. Magn. Magn. 321, 913–916 (2008). https://doi.org/10.1016/j.jmmm.2008.11.054
Y.F. Zhang, H. Ren, Z.T. Hou, First-principles calculations of electronic and optical properties of F, C-codoped cubic HfO2. J. Magn. Magn. 375, 61–64 (2015). https://doi.org/10.1016/j.jmmm.2014.09.043
Y.F. Zhang, H. Ren, Z.T. Hou, First-principles calculations of electronic and optical properties of F, C-codoped cubic ZrO2. J. Magn. Magn. 617, 86–92 (2014). https://doi.org/10.1016/j.jallcom.2014.07.215
M.K. Sharma, A. Kanjilal, M. Voelskow, D. Kanjilal, R. Chatterjee, Room temperature ferromagnetism in Ni-doped HfO2 thin films. J. Phys. D Appl. Phys. 43, 305003 (2010). https://doi.org/10.1088/0022-3727/43/30/305003
C. Han, S.S. Yan, X.L. Lin, S.J. Hu, M.W. Zhao, X.X. Yao, Y.X. Chen, G.L. Liu, L.M. Mei, Effect of native defects and Co doping on ferromagnetism in HfO2: first-principles calculations. J. Comput. Chem. 32, 1298–1302 (2011). https://doi.org/10.1002/jcc.21711
R. Singhal, M.K. Singh, A. Kumar, A. Omidwar, N. Kumar, P.K. LeMaire, R.S. Katiyar, Synthesis, structural, Raman scattering and magnetic properties of Fe -doped HfO2 nanoparticles. Mater. Res. Express 6, 096117 (2019). https://doi.org/10.1088/2053-1591/ab0927
C.Y. Bon, D. Kim, K. Lee, S. Choi, I. Park, S.I. Yoo, Enhanced electrical properties of Nb-doped a-HfO2 dielectric films for MIM capacitors. AIP Adv. 10, 115117 (2020). https://doi.org/10.1063/5.0024783
P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, an augment plane wave+ local orbitals program for calculating crystal properties, User’s Guide (2001). ISBN 3-9501031-1-2.
P. Perdew, S. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401
P. Rauwel, E. Rauwel, C. Persson, M.F. Sunding, A. Galeckas, One step synthesis of pure cubic and monoclinic HfO2 nanoparticles: correlating the structure to the electronic properties of the two polymorphs. J. Appl. Phys. 112, 104107 (2012). https://doi.org/10.1063/1.4766272
N. Kumar, B.P.A. George, H. Abrahamse, V. Parashar, S.S. Ray, J.C. Ngila, A novel approach to low-temperature synthesis of cubic HfO2 nanostructures and their cytotoxicity. Sci. Rep. 7, 9351 (2017). https://doi.org/10.1038/s41598-017-07753-0
R. Kumar, A. Vij, M. Singh, Electronic, thermoelectric, and optical studies of cubic Hf1−xTixO2: an attempt to enhance the key parameters. J. Solid State Chem. 307, 122829 (2022). https://doi.org/10.1016/j.jssc.2021.122829
M. Born, K. Huange, Dynamical theory of crystal lattices (Clarendon Press, Oxford, 1956)
C.S. Man, M. Huang, A simple explicit formula for the Voigt-Reuss-Hill average of elastic polycrystals with arbitrary crystal and texture symmetries. J. Elast. 105, 29–48 (2011). https://doi.org/10.1007/s10659-011-9312-y
D.M. Hoat, J.F.R. Silva, A.M. Blas, First principles study of structural, electronic, elastic and thermodynamic properties of cubic HfO2 under pressure. Phys. B Condens. Matter 545, 55–61 (2018). https://doi.org/10.1016/j.physb.2018.05.038
R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983). https://doi.org/10.1103/PhysRevLett.50.2024
D. Ködderitzsch, W. Hergert, Electronic structure and magnetic interactions in strongly correlated transition-metal oxides. Phase Transit. 77, 241–252 (2007). https://doi.org/10.1080/01411590310001623201
T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides. Nature Mater. 9, 965–974 (2010). https://doi.org/10.1038/nmat2898
H. Peng, J. Li, S.S. Li, J.B. Xia, First-principles study of the electronic structures and magnetic properties of 3d transition metal-doped anatase TiO2. J. Phys. Condens. Matter 20, 125207 (2008). https://doi.org/10.1088/0953-8984/20/12/125207
W.E. Pickett, J.S. Moodera, Half metallic magnets. Phys. Today 54, 39 (2001). https://doi.org/10.1063/1.1381101
X. Zhao, M. Wang, T. Wei, J. Ren, B. Wang, Y. Han, Z. Zhao, Possible origin of ferromagnetism in transition metal doped zirconia. J. Supercond. Nov. Magn. 31, 2559–2565 (2018). https://doi.org/10.1007/s10948-017-4512-8
A.I. Liechtenstein, M.I. Katsnelson, V.P. Antropov, V.A. Gubanov, Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65–74 (1987). https://doi.org/10.1016/0304-8853(87)90721-9
J.M.D. Coey, M. Venkatesan, C. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005). https://doi.org/10.1038/nmat1310
C.D. Pemmaraju, S. Sanvito, Ferromagnetism driven by intrinsic point defects in HfO2. Phys. Rev. Lett. 94, 217205 (2005). https://doi.org/10.1103/PhysRevLett.94.217205
F. Goumrhar, L. Bahmad, O. Mounkachi, A. Benyoussef, Ferromagnetism in Mn and Fe doped ZrO2 by ab-initio calculations. Comput. Condens. Matter 19, e00361 (2019). https://doi.org/10.1016/j.cocom.2018.e00361
N.H. Hong, C.K. Park, A.T. Raghavender, A. Ruyter, E. Chikoidze, Y. Dumont, High temperature ferromagnetism in cubic Mn-doped ZrO2 thin films. J. Magn. Magn. Mater. 324, 3013–3016 (2012). https://doi.org/10.1016/j.jmmm.2012.04.047