An Unlikely Route to Low Lattice Thermal Conductivity: Small Atoms in a Simple Layered Structure

Joule - Tập 2 - Trang 1879-1893 - 2018
Wanyue Peng1, Guido Petretto2, Gian-Marco Rignanese2, Geoffroy Hautier2, Alexandra Zevalkink1
1Michigan State University, East Lansing, MI, USA
2Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Tài liệu tham khảo

Shi, 2015, Evaluating broader impacts of nanoscale thermal transport research, Nanosc. Microsc. Therm. Eng., 19, 127, 10.1080/15567265.2015.1031857 Biswas, 2012, High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature, 489, 414, 10.1038/nature11439 Bux, 2010, Nanostructured materials for thermoelectric applications, Chem. Commun. (Camb.), 46, 8311, 10.1039/c0cc02627a Klemens, 1955, The scattering of low-frequency lattice waves by static imperfections, Proc. Phys. Soc., 68, 1113, 10.1088/0370-1298/68/12/303 He, 2013, High performance bulk thermoelectrics via a panoscopic approach, Mater. Today, 16, 166, 10.1016/j.mattod.2013.05.004 Toberer, 2008, Traversing the metal-insulator transition in a Zintl phase: rational enhancement of thermoelectric efficiency in Yb14Mn1-xAlxSb11, Adv. Funct. Mater., 18, 2795, 10.1002/adfm.200800298 Toberer, 2011, Phonon engineering through crystal chemistry, J. Mater. Chem., 21, 15843, 10.1039/c1jm11754h Lee, 2014, Resonant bonding leads to low lattice thermal conductivity, Nat. Commun., 5, 3525, 10.1038/ncomms4525 Madsen, 2005, Anharmonic lattice dynamics in type-I clathrates from first-principles calculations, Phys. Rev. B, 72, 220301, 10.1103/PhysRevB.72.220301 Lai, 2015, From bonding asymmetry to anharmonic rattling in Cu12Sb4S13 tetrahedrites: when lone-pair electrons are not so lonely, Adv. Funct. Mater., 25, 3648, 10.1002/adfm.201500766 Skoug, 2011, Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds, Phys. Rev. Lett., 107, 235901, 10.1103/PhysRevLett.107.235901 Lu, 2013, High performance thermoelectricity in earth-abundant compounds based on natural mineral tetrahedrites, Adv. Energy Mater., 3, 342, 10.1002/aenm.201200650 Bansal, 2016, Phonon anharmonicity and negative thermal expansion in SnSe, Phys. Rev. B, 94, 054307, 10.1103/PhysRevB.94.054307 Delaire, 2011, Giant anharmonic phonon scattering in PbTe, Nat. Mater., 10, 614, 10.1038/nmat3035 Bhardwaj, 2013, Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation, RSC Adv., 3, 8504, 10.1039/c3ra40457a Song, 2017, Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg3Sb2 thermoelectric materials, J. Mater. Chem., 5, 4932, 10.1039/C6TA08316A Shuai, 2015, Thermoelectric properties of Na-doped Zintl compound: Mg3-xNaxSb2, Acta Mater., 93, 187, 10.1016/j.actamat.2015.04.023 Shuai, 2017, Recent progress and future challenges on thermoelectric Zintl materials, Mater. Today Phys., 1, 74, 10.1016/j.mtphys.2017.06.003 Peng, 2018, Crystal chemistry and thermoelectric transport of layered AM2X2 compounds, Inorg. Chem. Front., 10.1039/C7QI00813A Wood, 2018, Observation of valence band crossing: the thermoelectric properties of CaZn2Sb2-CaMg2Sb2 solid solution, J. Mater. Chem. A, 6, 9437, 10.1039/C8TA02250J Martinez-Ripoll, 1974, The crystal structure of α-Mg3Sb2, Acta Cryst. B, 30, 2006, 10.1107/S0567740874006285 De Jong, 2015, Charting the complete elastic properties of inorganic crystalline compounds, Sci. Data, 2, 150009, 10.1038/sdata.2015.9 Jain, 2013, The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater., 1, 011002, 10.1063/1.4812323 Tamaki, 2016, Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered zintl compounds with high thermoelectric performance, Adv. Mater., 28, 10182, 10.1002/adma.201603955 Zhang, 2017, High-performance low-cost n-type Se-doped Mg3Sb2-based Zintl compounds for thermoelectric application, Chem. Mater., 29, 5371, 10.1021/acs.chemmater.7b01746 Zhang, 2017, Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands, Nat. Commun., 8, 13901, 10.1038/ncomms13901 Imasato, 2017, Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance, Mater. Horizons, 5, 59, 10.1039/C7MH00865A Shuai, 2017, Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties, Energ. Environ. Sci., 10, 799, 10.1039/C7EE00098G Ohno, 2017, Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics, Joule, 2, 141, 10.1016/j.joule.2017.11.005 Zhang, 2016, Designing high-performance layered thermoelectric materials through orbital engineering, Nat. Commun., 7, 10892, 10.1038/ncomms10892 Shuai, 2016, Higher thermoelectric performance of Zintl phases (Eu0.5Yb0.5)1-xCaxMg2Bi2 by band engineering and strain fluctuation, Proc. Natl. Acad. Sci. USA, 113, E4125, 10.1073/pnas.1608794113 Kuo, 2018, Grain boundary dominated charge transport in Mg3Sb2-based compounds, Energ. Environ. Sci., 11, 429, 10.1039/C7EE03326E Slack, 1979, The thermal conductivity of nonmetallic crystals, volume 34, 1 Zeier, 2017, New tricks for optimizing thermoelectric materials, Curr. Opin. Green Sustain. Chem., 4, 23, 10.1016/j.cogsc.2017.02.003 Miller, 2017, Capturing anharmonicity in a lattice thermal conductivity model for high-throughput predictions, Chem. Mater., 29, 2494, 10.1021/acs.chemmater.6b04179 Singh, 2013, Electronic and transport properties of zintl phase AeMg2Pn2, Ae= Ca, Sr, Ba, Pn= As, Sb, Bi in relation to Mg3Sb2, J. Appl. Phys., 114, 143703, 10.1063/1.4824465 Tani, 2010, Lattice dynamics and elastic properties of Mg3As2 and Mg3Sb2 compounds from first-principles calculations, Physica B Condens. Matter, 405, 4219, 10.1016/j.physb.2010.07.014 Tritt, 2005 Li, 2010, High temperature resonant ultrasound spectroscopy: a review, Int. J. Spectrosc., 10.1155/2010/206362 ASTM International, 2018, E1876-15: Standard test method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio by impulse excitation of vibration, Annual Book of ASTM Standards, 03.01 Jenkins, 1972, Elastic moduli and phonon properties of Bi2Te3, Phys. Rev. B, 5, 3171, 10.1103/PhysRevB.5.3171 Grimsditch, 1983, Shear elastic modulus of graphite, J. Phys. C Solid State Phys, 16, L143, 10.1088/0022-3719/16/5/002 Zabel, 2001, Phonons in layered compounds, J. Phys. Condens. Matter, 13, 7679, 10.1088/0953-8984/13/34/313 Li, 2018, Liquid-like thermal conduction in intercalated layered crystalline solids, Nat. Mater., 17, 226, 10.1038/s41563-017-0004-2 Li, 2017, Deformation mechanisms in high-efficiency thermoelectric layered zintl compounds, J. Mater. Chem. A, 5, 9050, 10.1039/C7TA02080E Ren, 2008, The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy, Acta Mater., 56, 5954, 10.1016/j.actamat.2008.07.055 Schmidt, 2013, High-temperature elastic moduli of thermoelectric SnTe1±x-y SiC nanoparticulate composites, J. Mater. Sci., 48, 8244, 10.1007/s10853-013-7637-6 Morelli, 2006, High lattice thermal conductivity solids, 37 Ledbetter, 1994, Relationship between bulk-modulus temperature dependence and thermal expansivity, Phys. Status Solidi B, 181, 81, 10.1002/pssb.2221810109 Khatun, 2013, Quaternary arsenides AM1.5Tt0.5As2 (A= Na, K, Rb; M= Zn, Cd; Tt= Si, Ge, Sn): size effects in CaAl2Si2-and ThCr2Si2-type structures, Inorg. Chem., 52, 3148, 10.1021/ic302627n Klüfers, 1984, AB2X2-verbindungen mit CaAl2Si2-struktur, Z. Kristallog. Cryst. Mater., 169, 135, 10.1524/zkri.1984.169.1-4.135 Pauling, 1960, volume 260 1992 Shannon, 1969, Effective ionic radii in oxides and fluorides, Acta Cryst. B, 25, 925, 10.1107/S0567740869003220 Sevastâ yanova, 2006, Binary and ternary compounds in the Mg-Sb-B and Mg-Bi-B systems as catalysts for the synthesis of cubic BN, Inorg. Mater., 42, 863, 10.1134/S0020168506080115 Hong, 2016, Electronic instability and anharmonicity in SnSe, arXiv Li, 2015, Orbitally driven giant phonon anharmonicity in SnSe, Nat. Phys., 11, 1063, 10.1038/nphys3492 Nolas, 2001, Semiconductor clathrates: a phonon glass electron crystal material with potential for thermoelectric applications, volume 69, 255 Nolas, 1999, Skutterudites: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications,, Annu. Rev. Mater. Sci., 29, 89, 10.1146/annurev.matsci.29.1.89 Uher, 2001, Skutterudites: prospective novel thermoelectrics, volume 69, 139 Gonze, 2002, First-principles computation of material properties: the ABINIT software project, Comput. Mater. Sci., 25, 478, 10.1016/S0927-0256(02)00325-7 Gonze, 2009, ABINIT: first-principles approach to material and nanosystem properties, Comput. Mater. Sci., 180, 2582 Gonze, 2016, Recent developments in the ABINIT software package, Comput. Phys. Comm., 205, 106, 10.1016/j.cpc.2016.04.003 Baroni, 2001, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys., 73, 515, 10.1103/RevModPhys.73.515 Gonze, 1997, First-principles responses of solids to atomic displacements and homogeneous electric fields: implementation of a conjugate-gradient algorithm, Phys. Rev. B, 55, 10337, 10.1103/PhysRevB.55.10337 Gonze, 1997, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B, 55, 10355, 10.1103/PhysRevB.55.10355 Hamann, 2005, Metric tensor formulation of strain in density-functional perturbation theory, Phys. Rev. B, 71, 10.1103/PhysRevB.71.035117 Perdew, 2008, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett., 100, 136406, 10.1103/PhysRevLett.100.136406 He, 2014, Accuracy of generalized gradient approximation functionals for density-functional perturbation theory calculations, Phys. Rev. B, 89, 064305, 10.1103/PhysRevB.89.064305 Hamann, 2013, Optimized norm-conserving vanderbilt pseudopotentials, Phys. Rev. B, 88, 085117, 10.1103/PhysRevB.88.085117 van Setten, 2018, The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table, Comput. Phys. Comm., 10.1016/j.cpc.2018.01.012 Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188 Petretto, 2018, Convergence and pitfalls of density functional perturbation theory phonons calculations from a high-throughput perspective, Comput. Mater. Sci., 144, 331, 10.1016/j.commatsci.2017.12.040 Petretto, 2018, High-throughput density functional perturbation theory phonons for inorganic materials, Sci. Data, 5, 180065, 10.1038/sdata.2018.65 Madsen, 2015, Calculating the thermal conductivity of the silicon clathrates using the quasi-harmonic approximation, Phys. Status Solidi A, 213, 802, 10.1002/pssa.201532615