An Unlikely Route to Low Lattice Thermal Conductivity: Small Atoms in a Simple Layered Structure
Tài liệu tham khảo
Shi, 2015, Evaluating broader impacts of nanoscale thermal transport research, Nanosc. Microsc. Therm. Eng., 19, 127, 10.1080/15567265.2015.1031857
Biswas, 2012, High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature, 489, 414, 10.1038/nature11439
Bux, 2010, Nanostructured materials for thermoelectric applications, Chem. Commun. (Camb.), 46, 8311, 10.1039/c0cc02627a
Klemens, 1955, The scattering of low-frequency lattice waves by static imperfections, Proc. Phys. Soc., 68, 1113, 10.1088/0370-1298/68/12/303
He, 2013, High performance bulk thermoelectrics via a panoscopic approach, Mater. Today, 16, 166, 10.1016/j.mattod.2013.05.004
Toberer, 2008, Traversing the metal-insulator transition in a Zintl phase: rational enhancement of thermoelectric efficiency in Yb14Mn1-xAlxSb11, Adv. Funct. Mater., 18, 2795, 10.1002/adfm.200800298
Toberer, 2011, Phonon engineering through crystal chemistry, J. Mater. Chem., 21, 15843, 10.1039/c1jm11754h
Lee, 2014, Resonant bonding leads to low lattice thermal conductivity, Nat. Commun., 5, 3525, 10.1038/ncomms4525
Madsen, 2005, Anharmonic lattice dynamics in type-I clathrates from first-principles calculations, Phys. Rev. B, 72, 220301, 10.1103/PhysRevB.72.220301
Lai, 2015, From bonding asymmetry to anharmonic rattling in Cu12Sb4S13 tetrahedrites: when lone-pair electrons are not so lonely, Adv. Funct. Mater., 25, 3648, 10.1002/adfm.201500766
Skoug, 2011, Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds, Phys. Rev. Lett., 107, 235901, 10.1103/PhysRevLett.107.235901
Lu, 2013, High performance thermoelectricity in earth-abundant compounds based on natural mineral tetrahedrites, Adv. Energy Mater., 3, 342, 10.1002/aenm.201200650
Bansal, 2016, Phonon anharmonicity and negative thermal expansion in SnSe, Phys. Rev. B, 94, 054307, 10.1103/PhysRevB.94.054307
Delaire, 2011, Giant anharmonic phonon scattering in PbTe, Nat. Mater., 10, 614, 10.1038/nmat3035
Bhardwaj, 2013, Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation, RSC Adv., 3, 8504, 10.1039/c3ra40457a
Song, 2017, Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg3Sb2 thermoelectric materials, J. Mater. Chem., 5, 4932, 10.1039/C6TA08316A
Shuai, 2015, Thermoelectric properties of Na-doped Zintl compound: Mg3-xNaxSb2, Acta Mater., 93, 187, 10.1016/j.actamat.2015.04.023
Shuai, 2017, Recent progress and future challenges on thermoelectric Zintl materials, Mater. Today Phys., 1, 74, 10.1016/j.mtphys.2017.06.003
Peng, 2018, Crystal chemistry and thermoelectric transport of layered AM2X2 compounds, Inorg. Chem. Front., 10.1039/C7QI00813A
Wood, 2018, Observation of valence band crossing: the thermoelectric properties of CaZn2Sb2-CaMg2Sb2 solid solution, J. Mater. Chem. A, 6, 9437, 10.1039/C8TA02250J
Martinez-Ripoll, 1974, The crystal structure of α-Mg3Sb2, Acta Cryst. B, 30, 2006, 10.1107/S0567740874006285
De Jong, 2015, Charting the complete elastic properties of inorganic crystalline compounds, Sci. Data, 2, 150009, 10.1038/sdata.2015.9
Jain, 2013, The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater., 1, 011002, 10.1063/1.4812323
Tamaki, 2016, Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered zintl compounds with high thermoelectric performance, Adv. Mater., 28, 10182, 10.1002/adma.201603955
Zhang, 2017, High-performance low-cost n-type Se-doped Mg3Sb2-based Zintl compounds for thermoelectric application, Chem. Mater., 29, 5371, 10.1021/acs.chemmater.7b01746
Zhang, 2017, Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands, Nat. Commun., 8, 13901, 10.1038/ncomms13901
Imasato, 2017, Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance, Mater. Horizons, 5, 59, 10.1039/C7MH00865A
Shuai, 2017, Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties, Energ. Environ. Sci., 10, 799, 10.1039/C7EE00098G
Ohno, 2017, Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics, Joule, 2, 141, 10.1016/j.joule.2017.11.005
Zhang, 2016, Designing high-performance layered thermoelectric materials through orbital engineering, Nat. Commun., 7, 10892, 10.1038/ncomms10892
Shuai, 2016, Higher thermoelectric performance of Zintl phases (Eu0.5Yb0.5)1-xCaxMg2Bi2 by band engineering and strain fluctuation, Proc. Natl. Acad. Sci. USA, 113, E4125, 10.1073/pnas.1608794113
Kuo, 2018, Grain boundary dominated charge transport in Mg3Sb2-based compounds, Energ. Environ. Sci., 11, 429, 10.1039/C7EE03326E
Slack, 1979, The thermal conductivity of nonmetallic crystals, volume 34, 1
Zeier, 2017, New tricks for optimizing thermoelectric materials, Curr. Opin. Green Sustain. Chem., 4, 23, 10.1016/j.cogsc.2017.02.003
Miller, 2017, Capturing anharmonicity in a lattice thermal conductivity model for high-throughput predictions, Chem. Mater., 29, 2494, 10.1021/acs.chemmater.6b04179
Singh, 2013, Electronic and transport properties of zintl phase AeMg2Pn2, Ae= Ca, Sr, Ba, Pn= As, Sb, Bi in relation to Mg3Sb2, J. Appl. Phys., 114, 143703, 10.1063/1.4824465
Tani, 2010, Lattice dynamics and elastic properties of Mg3As2 and Mg3Sb2 compounds from first-principles calculations, Physica B Condens. Matter, 405, 4219, 10.1016/j.physb.2010.07.014
Tritt, 2005
Li, 2010, High temperature resonant ultrasound spectroscopy: a review, Int. J. Spectrosc., 10.1155/2010/206362
ASTM International, 2018, E1876-15: Standard test method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio by impulse excitation of vibration, Annual Book of ASTM Standards, 03.01
Jenkins, 1972, Elastic moduli and phonon properties of Bi2Te3, Phys. Rev. B, 5, 3171, 10.1103/PhysRevB.5.3171
Grimsditch, 1983, Shear elastic modulus of graphite, J. Phys. C Solid State Phys, 16, L143, 10.1088/0022-3719/16/5/002
Zabel, 2001, Phonons in layered compounds, J. Phys. Condens. Matter, 13, 7679, 10.1088/0953-8984/13/34/313
Li, 2018, Liquid-like thermal conduction in intercalated layered crystalline solids, Nat. Mater., 17, 226, 10.1038/s41563-017-0004-2
Li, 2017, Deformation mechanisms in high-efficiency thermoelectric layered zintl compounds, J. Mater. Chem. A, 5, 9050, 10.1039/C7TA02080E
Ren, 2008, The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy, Acta Mater., 56, 5954, 10.1016/j.actamat.2008.07.055
Schmidt, 2013, High-temperature elastic moduli of thermoelectric SnTe1±x-y SiC nanoparticulate composites, J. Mater. Sci., 48, 8244, 10.1007/s10853-013-7637-6
Morelli, 2006, High lattice thermal conductivity solids, 37
Ledbetter, 1994, Relationship between bulk-modulus temperature dependence and thermal expansivity, Phys. Status Solidi B, 181, 81, 10.1002/pssb.2221810109
Khatun, 2013, Quaternary arsenides AM1.5Tt0.5As2 (A= Na, K, Rb; M= Zn, Cd; Tt= Si, Ge, Sn): size effects in CaAl2Si2-and ThCr2Si2-type structures, Inorg. Chem., 52, 3148, 10.1021/ic302627n
Klüfers, 1984, AB2X2-verbindungen mit CaAl2Si2-struktur, Z. Kristallog. Cryst. Mater., 169, 135, 10.1524/zkri.1984.169.1-4.135
Pauling, 1960, volume 260
1992
Shannon, 1969, Effective ionic radii in oxides and fluorides, Acta Cryst. B, 25, 925, 10.1107/S0567740869003220
Sevastâ yanova, 2006, Binary and ternary compounds in the Mg-Sb-B and Mg-Bi-B systems as catalysts for the synthesis of cubic BN, Inorg. Mater., 42, 863, 10.1134/S0020168506080115
Hong, 2016, Electronic instability and anharmonicity in SnSe, arXiv
Li, 2015, Orbitally driven giant phonon anharmonicity in SnSe, Nat. Phys., 11, 1063, 10.1038/nphys3492
Nolas, 2001, Semiconductor clathrates: a phonon glass electron crystal material with potential for thermoelectric applications, volume 69, 255
Nolas, 1999, Skutterudites: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications,, Annu. Rev. Mater. Sci., 29, 89, 10.1146/annurev.matsci.29.1.89
Uher, 2001, Skutterudites: prospective novel thermoelectrics, volume 69, 139
Gonze, 2002, First-principles computation of material properties: the ABINIT software project, Comput. Mater. Sci., 25, 478, 10.1016/S0927-0256(02)00325-7
Gonze, 2009, ABINIT: first-principles approach to material and nanosystem properties, Comput. Mater. Sci., 180, 2582
Gonze, 2016, Recent developments in the ABINIT software package, Comput. Phys. Comm., 205, 106, 10.1016/j.cpc.2016.04.003
Baroni, 2001, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys., 73, 515, 10.1103/RevModPhys.73.515
Gonze, 1997, First-principles responses of solids to atomic displacements and homogeneous electric fields: implementation of a conjugate-gradient algorithm, Phys. Rev. B, 55, 10337, 10.1103/PhysRevB.55.10337
Gonze, 1997, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B, 55, 10355, 10.1103/PhysRevB.55.10355
Hamann, 2005, Metric tensor formulation of strain in density-functional perturbation theory, Phys. Rev. B, 71, 10.1103/PhysRevB.71.035117
Perdew, 2008, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett., 100, 136406, 10.1103/PhysRevLett.100.136406
He, 2014, Accuracy of generalized gradient approximation functionals for density-functional perturbation theory calculations, Phys. Rev. B, 89, 064305, 10.1103/PhysRevB.89.064305
Hamann, 2013, Optimized norm-conserving vanderbilt pseudopotentials, Phys. Rev. B, 88, 085117, 10.1103/PhysRevB.88.085117
van Setten, 2018, The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table, Comput. Phys. Comm., 10.1016/j.cpc.2018.01.012
Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188
Petretto, 2018, Convergence and pitfalls of density functional perturbation theory phonons calculations from a high-throughput perspective, Comput. Mater. Sci., 144, 331, 10.1016/j.commatsci.2017.12.040
Petretto, 2018, High-throughput density functional perturbation theory phonons for inorganic materials, Sci. Data, 5, 180065, 10.1038/sdata.2018.65
Madsen, 2015, Calculating the thermal conductivity of the silicon clathrates using the quasi-harmonic approximation, Phys. Status Solidi A, 213, 802, 10.1002/pssa.201532615