An S-scheme NH2-UiO-66/SiC photocatalyst via microwave synthesis with improved CO2 reduction activity
Tài liệu tham khảo
Ran, 2018, Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities, Adv. Mater., 30, 10.1002/adma.201704649
Huo, 2019, All-solid-state artificial Z-scheme porous g-C3N4/Sn2S3-DETA heterostructure photocatalyst with enhanced performance in photocatalytic CO2 reduction, Appl. Catal. B: Environ., 241, 528, 10.1016/j.apcatb.2018.09.073
Li, 2021, Boosting photocatalytic hydrogen production coupled with benzyl alcohol oxidation over CdS/metal-organic framework composites, Chem. Eng. J., 421, 10.1016/j.cej.2021.129870
Li, 2020, Visible-light-driven photocatalytic hydrogen production coupled with selective oxidation of benzyl alcohol over CdS@MoS2 heterostructures, Sci. China Mater., 63, 2239, 10.1007/s40843-020-1448-2
Tian, 2021, Efficient photocatalytic hydrogen peroxide generation coupled with selective benzylamine oxidation over defective ZrS3 nanobelts, Nat. Commun., 12, 2039, 10.1038/s41467-021-22394-8
Shehzad, 2018, A critical review on TiO2 based photocatalytic CO2 reduction system: strategies to improve efficiency, J. Co2 Util., 26, 98, 10.1016/j.jcou.2018.04.026
Crake, 2017, CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV-vis irradiation, Appl. Catal. B: Environ., 210, 131, 10.1016/j.apcatb.2017.03.039
Tang, 2020, Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance, J. Colloid Interface Sci., 564, 406, 10.1016/j.jcis.2019.12.091
Gao, 2021, Decoration of γ-graphyne on TiO2 nanotube arrays: improved photoelectrochemical and photoelectrocatalytic properties, Appl. Catal. B: Environ., 281, 10.1016/j.apcatb.2020.119492
Zhao, 2021, CeO2/3D g-C3N4 heterojunction deposited with Pt cocatalyst for enhanced photocatalytic CO2 reduction, Appl. Surf. Sci., 537, 10.1016/j.apsusc.2020.147891
Ji, 2020, Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction, Angew. Chem.-Int. Ed., 59, 10651, 10.1002/anie.202003623
Xu, 2018, CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction, Appl. Catal. B: Environ., 230, 194, 10.1016/j.apcatb.2018.02.042
Jin, 2015, A hierarchical Z-Scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity, Small, 11, 5262, 10.1002/smll.201500926
Low, 2018, TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity, J. Catal., 361, 255, 10.1016/j.jcat.2018.03.009
Yu, 2015, Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism, J. Mater. Chem. A, 3, 19936, 10.1039/C5TA05503B
Sayed, 2021, Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres, Nat. Commun., 12, 4936, 10.1038/s41467-021-25007-6
Sumida, 2012, Carbon dioxide capture in metal-organic frameworks, Chem. Rev., 112, 724, 10.1021/cr2003272
Li, 2012, Metal-organic frameworks for separations, Chem. Rev., 112, 869, 10.1021/cr200190s
Fang, 2020, Boosting interfacial charge-transfer kinetics for efficient overall CO2 photoreduction via rational design of coordination spheres on metal-organic frameworks, J. Am. Chem. Soc., 142, 12515, 10.1021/jacs.0c05530
Dhakshinamoorthy, 2018, Catalysis and photocatalysis by metal organic frameworks, Chem. Soc. Rev., 47, 8134, 10.1039/C8CS00256H
Masoomi, 2019, Mixed-metal MOFs: unique opportunities in metal-organic framework (MOF) functionality and design, Angew. Chemie Int. Ed., 58, 15188, 10.1002/anie.201902229
Fu, 2019, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst, Appl. Catal. B: Environ., 243, 556, 10.1016/j.apcatb.2018.11.011
Xu, 2020, S-scheme heterojunction photocatalyst, Chemistry, 6, 1543, 10.1016/j.chempr.2020.06.010
Deng, 2021, S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity, Chem. Eng. J., 409, 10.1016/j.cej.2020.127377
Wang, 2020, Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity, J. Mater. Sci. Technol., 56, 143, 10.1016/j.jmst.2020.02.062
Teng, 2021, Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide, Nat. Catal., 4
Qiu, 2017, Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting, Angew. Chemie-Int. Ed., 56, 2684, 10.1002/anie.201612551
Li, 2018, Facile hydrothermal synthesis of Z-scheme Bi2Fe4O9/Bi2WO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity, ACS Appl. Mater. Interfaces, 10, 18824, 10.1021/acsami.8b06128
She, 2017, High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-Scheme catalysts, Adv. Energy Mater., 7, 10.1002/aenm.201700025
Xie, 2018, Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline, Appl. Catal. B: Environ., 229, 96, 10.1016/j.apcatb.2018.02.011
Pan, 2021, The photocatalytic overall water splitting hydrogen production of g-C3N4/CdS hollow core-shell heterojunction via the HER/OER matching of Pt/MnOx, Chem. Eng. J., 405, 10.1016/j.cej.2020.126622
Li, 2017, Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst, Appl. Surf. Sci., 391, 184, 10.1016/j.apsusc.2016.06.145
Xiao, 2019, Controlled hydrolysis of metal-organic frameworks: hierarchical Ni/Co-layered double hydroxide microspheres for high-performance supercapacitors, ACS Nano, 13, 7024, 10.1021/acsnano.9b02106
Xiao, 2019, A chloroplast structured photocatalyst enabled by microwave synthesis, Nat. Commun., 10, 1570, 10.1038/s41467-019-09509-y
Xiao, 2018, Bimetal MOF derived mesocrystal ZnCo2O4 on rGO with high performance in visible-light photocatalytic NO oxidization, Appl. Catal. B: Environ., 236, 304, 10.1016/j.apcatb.2018.05.033
Xiao, 2015, Copper nanowires: a substitute for noble metals to enhance photocatalytic H2 generation, Nano Lett., 15, 4853, 10.1021/acs.nanolett.5b00082
Xiao, 2019, Microwave-induced metal dissolution synthesis of core-shell copper nanowires/ZnS for visible light photocatalytic H2 evolution, Adv. Energy Mater., 9
Li, 2021, Zirconium-based metal–organic framework particle films for visible-light-driven efficient photoreduction of CO2, ACS Sustain. Chem. Eng., 9, 2319, 10.1021/acssuschemeng.0c08559
Zhao, 2018, CdS/NH2-UiO-66 hybrid membrane reactors for the efficient photocatalytic conversion of CO2, J. Mater. Chem. A, 6, 20152, 10.1039/C8TA05970E
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Segall, 2002, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.-Condens. Matter, 14, 2717, 10.1088/0953-8984/14/11/301
Vanderbilt, 1990, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev., B Condens. Matter, 41, 7892, 10.1103/PhysRevB.41.7892
Trickett, 2015, Definitive molecular level characterization of defects in UiO-66 crystals, Angew. Chemie-Int. Ed., 54, 11162, 10.1002/anie.201505461
Chen, 2020, NH2-UiO-66(Zr) with fast electron transfer routes for breaking down nitric oxide via photocatalysis, Appl. Catal. B: Environ., 267, 10.1016/j.apcatb.2020.118687
Wang, 2017, Openmouthed beta-SiC hollow-sphere with highly photocatalytic activity for reduction of CO2 with H2O, Appl. Catal. B: Environ., 206, 158, 10.1016/j.apcatb.2017.01.028
Mourya, 2018, Structural and optical characteristics of in-situ sputtered highly oriented 15R-SiC thin films on different substrates, J. Appl. Phys., 123, 10.1063/1.5006976
Xu, 2019, Turning on visible-light photocatalytic C-H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer, J. Am. Chem. Soc., 141, 19110, 10.1021/jacs.9b09954
Sun, 2013, Studies on photocatalytic CO2 reduction over NH2-UiO-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks, Chem. Eur. J., 19, 14279, 10.1002/chem.201301728
Wang, 2018, Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure, J. Am. Chem. Soc., 140, 14595, 10.1021/jacs.8b09344
Zhang, 2018, Insights into the effects of surface/bulk defects on photocatalytic hydrogen evolution over TiO2 with exposed {001} facets, Appl. Catal. B: Environ., 220, 126, 10.1016/j.apcatb.2017.08.046
Xu, 2021, Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared photocatalytic H2 production, Adv. Mater., 33
Xu, 2021, Interfacial microenvironment modulation boosting Electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis, Angew. Chemie-Int. Ed., 60, 16372, 10.1002/anie.202104219
Meng, 2021, TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity, Appl. Catal. B: Environ., 289, 10.1016/j.apcatb.2021.120039
Wang, 2021, In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction, Small, 17
Cheng, 2021, An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism, Adv. Mater., 33, 10.1002/adma.202100317