An S-scheme NH2-UiO-66/SiC photocatalyst via microwave synthesis with improved CO2 reduction activity

Journal of CO2 Utilization - Tập 55 - Trang 101806 - 2022
Shuning Xiao1, Yuchuan Guan1, Huan Shang1, Haoliang Li1, Zhangliu Tian2, Suya Liu3, Wei Chen2,4, Junhe Yang1
1School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
2Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
3Shanghai NNP, Thermo Fisher Scientific Inc., Shanghai, 201210, China
4Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China

Tài liệu tham khảo

Ran, 2018, Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities, Adv. Mater., 30, 10.1002/adma.201704649 Huo, 2019, All-solid-state artificial Z-scheme porous g-C3N4/Sn2S3-DETA heterostructure photocatalyst with enhanced performance in photocatalytic CO2 reduction, Appl. Catal. B: Environ., 241, 528, 10.1016/j.apcatb.2018.09.073 Li, 2021, Boosting photocatalytic hydrogen production coupled with benzyl alcohol oxidation over CdS/metal-organic framework composites, Chem. Eng. J., 421, 10.1016/j.cej.2021.129870 Li, 2020, Visible-light-driven photocatalytic hydrogen production coupled with selective oxidation of benzyl alcohol over CdS@MoS2 heterostructures, Sci. China Mater., 63, 2239, 10.1007/s40843-020-1448-2 Tian, 2021, Efficient photocatalytic hydrogen peroxide generation coupled with selective benzylamine oxidation over defective ZrS3 nanobelts, Nat. Commun., 12, 2039, 10.1038/s41467-021-22394-8 Shehzad, 2018, A critical review on TiO2 based photocatalytic CO2 reduction system: strategies to improve efficiency, J. Co2 Util., 26, 98, 10.1016/j.jcou.2018.04.026 Crake, 2017, CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV-vis irradiation, Appl. Catal. B: Environ., 210, 131, 10.1016/j.apcatb.2017.03.039 Tang, 2020, Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance, J. Colloid Interface Sci., 564, 406, 10.1016/j.jcis.2019.12.091 Gao, 2021, Decoration of γ-graphyne on TiO2 nanotube arrays: improved photoelectrochemical and photoelectrocatalytic properties, Appl. Catal. B: Environ., 281, 10.1016/j.apcatb.2020.119492 Zhao, 2021, CeO2/3D g-C3N4 heterojunction deposited with Pt cocatalyst for enhanced photocatalytic CO2 reduction, Appl. Surf. Sci., 537, 10.1016/j.apsusc.2020.147891 Ji, 2020, Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction, Angew. Chem.-Int. Ed., 59, 10651, 10.1002/anie.202003623 Xu, 2018, CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction, Appl. Catal. B: Environ., 230, 194, 10.1016/j.apcatb.2018.02.042 Jin, 2015, A hierarchical Z-Scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity, Small, 11, 5262, 10.1002/smll.201500926 Low, 2018, TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity, J. Catal., 361, 255, 10.1016/j.jcat.2018.03.009 Yu, 2015, Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism, J. Mater. Chem. A, 3, 19936, 10.1039/C5TA05503B Sayed, 2021, Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres, Nat. Commun., 12, 4936, 10.1038/s41467-021-25007-6 Sumida, 2012, Carbon dioxide capture in metal-organic frameworks, Chem. Rev., 112, 724, 10.1021/cr2003272 Li, 2012, Metal-organic frameworks for separations, Chem. Rev., 112, 869, 10.1021/cr200190s Fang, 2020, Boosting interfacial charge-transfer kinetics for efficient overall CO2 photoreduction via rational design of coordination spheres on metal-organic frameworks, J. Am. Chem. Soc., 142, 12515, 10.1021/jacs.0c05530 Dhakshinamoorthy, 2018, Catalysis and photocatalysis by metal organic frameworks, Chem. Soc. Rev., 47, 8134, 10.1039/C8CS00256H Masoomi, 2019, Mixed-metal MOFs: unique opportunities in metal-organic framework (MOF) functionality and design, Angew. Chemie Int. Ed., 58, 15188, 10.1002/anie.201902229 Fu, 2019, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst, Appl. Catal. B: Environ., 243, 556, 10.1016/j.apcatb.2018.11.011 Xu, 2020, S-scheme heterojunction photocatalyst, Chemistry, 6, 1543, 10.1016/j.chempr.2020.06.010 Deng, 2021, S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity, Chem. Eng. J., 409, 10.1016/j.cej.2020.127377 Wang, 2020, Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity, J. Mater. Sci. Technol., 56, 143, 10.1016/j.jmst.2020.02.062 Teng, 2021, Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide, Nat. Catal., 4 Qiu, 2017, Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting, Angew. Chemie-Int. Ed., 56, 2684, 10.1002/anie.201612551 Li, 2018, Facile hydrothermal synthesis of Z-scheme Bi2Fe4O9/Bi2WO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity, ACS Appl. Mater. Interfaces, 10, 18824, 10.1021/acsami.8b06128 She, 2017, High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-Scheme catalysts, Adv. Energy Mater., 7, 10.1002/aenm.201700025 Xie, 2018, Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline, Appl. Catal. B: Environ., 229, 96, 10.1016/j.apcatb.2018.02.011 Pan, 2021, The photocatalytic overall water splitting hydrogen production of g-C3N4/CdS hollow core-shell heterojunction via the HER/OER matching of Pt/MnOx, Chem. Eng. J., 405, 10.1016/j.cej.2020.126622 Li, 2017, Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst, Appl. Surf. Sci., 391, 184, 10.1016/j.apsusc.2016.06.145 Xiao, 2019, Controlled hydrolysis of metal-organic frameworks: hierarchical Ni/Co-layered double hydroxide microspheres for high-performance supercapacitors, ACS Nano, 13, 7024, 10.1021/acsnano.9b02106 Xiao, 2019, A chloroplast structured photocatalyst enabled by microwave synthesis, Nat. Commun., 10, 1570, 10.1038/s41467-019-09509-y Xiao, 2018, Bimetal MOF derived mesocrystal ZnCo2O4 on rGO with high performance in visible-light photocatalytic NO oxidization, Appl. Catal. B: Environ., 236, 304, 10.1016/j.apcatb.2018.05.033 Xiao, 2015, Copper nanowires: a substitute for noble metals to enhance photocatalytic H2 generation, Nano Lett., 15, 4853, 10.1021/acs.nanolett.5b00082 Xiao, 2019, Microwave-induced metal dissolution synthesis of core-shell copper nanowires/ZnS for visible light photocatalytic H2 evolution, Adv. Energy Mater., 9 Li, 2021, Zirconium-based metal–organic framework particle films for visible-light-driven efficient photoreduction of CO2, ACS Sustain. Chem. Eng., 9, 2319, 10.1021/acssuschemeng.0c08559 Zhao, 2018, CdS/NH2-UiO-66 hybrid membrane reactors for the efficient photocatalytic conversion of CO2, J. Mater. Chem. A, 6, 20152, 10.1039/C8TA05970E Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Segall, 2002, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.-Condens. Matter, 14, 2717, 10.1088/0953-8984/14/11/301 Vanderbilt, 1990, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev., B Condens. Matter, 41, 7892, 10.1103/PhysRevB.41.7892 Trickett, 2015, Definitive molecular level characterization of defects in UiO-66 crystals, Angew. Chemie-Int. Ed., 54, 11162, 10.1002/anie.201505461 Chen, 2020, NH2-UiO-66(Zr) with fast electron transfer routes for breaking down nitric oxide via photocatalysis, Appl. Catal. B: Environ., 267, 10.1016/j.apcatb.2020.118687 Wang, 2017, Openmouthed beta-SiC hollow-sphere with highly photocatalytic activity for reduction of CO2 with H2O, Appl. Catal. B: Environ., 206, 158, 10.1016/j.apcatb.2017.01.028 Mourya, 2018, Structural and optical characteristics of in-situ sputtered highly oriented 15R-SiC thin films on different substrates, J. Appl. Phys., 123, 10.1063/1.5006976 Xu, 2019, Turning on visible-light photocatalytic C-H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer, J. Am. Chem. Soc., 141, 19110, 10.1021/jacs.9b09954 Sun, 2013, Studies on photocatalytic CO2 reduction over NH2-UiO-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks, Chem. Eur. J., 19, 14279, 10.1002/chem.201301728 Wang, 2018, Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure, J. Am. Chem. Soc., 140, 14595, 10.1021/jacs.8b09344 Zhang, 2018, Insights into the effects of surface/bulk defects on photocatalytic hydrogen evolution over TiO2 with exposed {001} facets, Appl. Catal. B: Environ., 220, 126, 10.1016/j.apcatb.2017.08.046 Xu, 2021, Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared photocatalytic H2 production, Adv. Mater., 33 Xu, 2021, Interfacial microenvironment modulation boosting Electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis, Angew. Chemie-Int. Ed., 60, 16372, 10.1002/anie.202104219 Meng, 2021, TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity, Appl. Catal. B: Environ., 289, 10.1016/j.apcatb.2021.120039 Wang, 2021, In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction, Small, 17 Cheng, 2021, An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism, Adv. Mater., 33, 10.1002/adma.202100317