An R package for statistical provenance analysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abramson, 1982, On bandwidth variation in kernel estimates—a square root law, The Annals of Statistics, 1217, 10.1214/aos/1176345986
Aitchison, 1983, Principal component analysis of compositional data, Biometrika, 70, 57, 10.1093/biomet/70.1.57
Aitchison, 1986
Aitchison, 2002, Biplots of compositional data, Journal of the Royal Statistical Society: Series C: Applied Statistics, 51, 375, 10.1111/1467-9876.00275
Allen, 2012, New technology and methodology for assessing sandstone composition: a preliminary case study using a quantitative electron microscope scanner (QEMScan), Geological Society of America Special Papers, 487, 177, 10.1130/2012.2487(11)
Avdeev, 2011, Doing more with less: Bayesian estimation of erosion models with detrital thermochronometric data, Earth and Planetary Science Letters, 305, 385, 10.1016/j.epsl.2011.03.020
Basu, 1989, Provenance characteristics of detrital opaque Fe–Ti oxide minerals, Journal of Sedimentary Research, 59
Borg, 2005
Botev, 2010, Kernel density estimation via diffusion, The Annals of Statistics, 38, 2916, 10.1214/10-AOS799
Carroll, 1970, Analysis of individual differences in multidimensional scaling via an N-way generalization of Eckart–Young decomposition, Psychometrika, 35, 283, 10.1007/BF02310791
Cheng, 1997, Simplified settling velocity formula for sediment particle, Journal of Hydraulic Engineering, 123, 149, 10.1061/(ASCE)0733-9429(1997)123:2(149)
Cox, 2000
De Leeuw, 2011
de Leeuw, 2009, Multidimensional scaling using majorization: the R package smacof, Journal of Statistical Software, 31, 1, 10.18637/jss.v031.i03
Dickinson, 1983, Provenance of North American Phanerozoic sandstones in relation to tectonic setting, Geological Society of America Bulletin, 94, 222, 10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2
Dodson, 1988, A search for ancient detrital zircons in Zimbabwean sediments, Journal of the Geological Society, 145, 977, 10.1144/gsjgs.145.6.0977
Feller, 1948, On the Kolmogorov–Smirnov limit theorems for empirical distributions, Annals of Mathematical Statistics, 19, 177, 10.1214/aoms/1177730243
Frei, 2009, Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS, Chemical Geology, 261, 261, 10.1016/j.chemgeo.2008.07.025
Garzanti, 2016, From static to dynamic provenance analysis—sedimentary petrology upgraded, Sedimentary Geology, 336, 2, 10.1016/j.sedgeo.2015.07.010
Garzanti, 2007, Heavy-mineral concentration in modern sands: implications for provenance interpretation, 517, 10.1016/S0070-4571(07)58020-9
Garzanti, 2008, Settling equivalence of detrital minerals and grain-size dependence of sediment composition, Earth and Planetary Science Letters, 273, 138, 10.1016/j.epsl.2008.06.020
Garzanti, 2009, Grain-size dependence of sediment composition and environmental bias in provenance studies, Earth and Planetary Science Letters, 277, 422, 10.1016/j.epsl.2008.11.007
Garzanti, 2012, Petrology of the Namib Sand Sea: long-distance transport and compositional variability in the wind-displaced Orange Delta, Earth-Science Reviews, 112, 173, 10.1016/j.earscirev.2012.02.008
Hurford, 1991, The role of fission track dating in discrimination of provenance, Geological Society, London, Special Publications, 57, 67, 10.1144/GSL.SP.1991.057.01.07
Komar, 1984, Grain-size analyses of mica within sediments and the hydraulic equivalence of mica and quartz, Journal of Sedimentary Research, 54
Kruskal, 1978, Multidimensional scaling
Ludwig, 2003
Marshall, 1996, TernPlot: an Excel spreadsheet for ternary diagrams, Computational Geosciences, 22, 697, 10.1016/0098-3004(96)00012-X
Martín-Fernández, 2003, Dealing with zeros and missing values in compositional data sets using nonparametric imputation, Mathematical Geology, 35, 253, 10.1023/A:1023866030544
Matter, 1985, Cathodoluminescence microscopy as a tool for provenance studies of sandstones, 191
McLennan, 1993, Geochemical approaches to sedimentation, provenance, and tectonics, Geological Society of America Special Papers, 284, 21, 10.1130/SPE284-p21
Morton, 1985, A new approach to provenance studies: electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea, Sedimentology, 32, 553, 10.1111/j.1365-3091.1985.tb00470.x
Owen, 1987, Hafnium content of detrital zircons, a new tool for provenance study, Journal of Sedimentary Research, 57
Popper, 1959
Renne, 1990, 40Ar/39Ar laser-probe dating of detrital micas from the Montgomery Creek Formation, northern California: clues to provenance, tectonics, and weathering processes, Geology, 18, 563, 10.1130/0091-7613(1990)018<0563:AALPDO>2.3.CO;2
Resentini, 2013, MinSORTING: an Excel worksheet for modelling mineral grain-size distribution in sediments, with application to detrital geochronology and provenance studies, Computational Geosciences, 59, 90, 10.1016/j.cageo.2013.05.015
Silverman, 1986
Sircombe, 2004, AgeDisplay: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions, Computational Geosciences, 30, 21, 10.1016/j.cageo.2003.09.006
Sircombe, 2004, Comparison of detrital zircon age distributions by kernel functional estimation, Sedimentary Geology, 171, 91, 10.1016/j.sedgeo.2004.05.012
Templ, 2011
van den Boogaart, 2008, “Compositions”: a unified R package to analyze compositional data, Computational Geosciences, 34, 320, 10.1016/j.cageo.2006.11.017
Vermeesch, 2004, How many grains are needed for a provenance study? Earth Planet, Science Letters, 224, 441
Vermeesch, 2007, Quantitative geomorphology of the White Mountains (California) using detrital apatite fission track thermochronology, Journal of Geophysical Research - Earth Surface, 112, 3004, 10.1029/2006JF000671
Vermeesch, 2012, On the visualisation of detrital age distributions, Chemical Geology, 312-313, 190, 10.1016/j.chemgeo.2012.04.021
Vermeesch, 2013, Multi-sample comparison of detrital age distributions, Chemical Geology, 341, 140, 10.1016/j.chemgeo.2013.01.010