An Ostensive Information Architecture to Enhance Semantic Interoperability for Healthcare Information Systems
Information Systems Frontiers - Trang 1-24 - 2023
Tóm tắt
Semantic interoperability establishes intercommunications and enables data sharing across disparate systems. In this study, we propose an ostensive information architecture for healthcare information systems to decrease ambiguity caused by using signs in different contexts for different purposes. The ostensive information architecture adopts a consensus-based approach initiated from the perspective of information systems re-design and can be applied to other domains where information exchange is required between heterogeneous systems. Driven by the issues in FHIR (Fast Health Interoperability Resources) implementation, an ostensive approach that supplements the current lexical approach in semantic exchange is proposed. A Semantic Engine with an FHIR knowledge graph as the core is constructed using Neo4j to provide semantic interpretation and examples. The MIMIC III (Medical Information Mart for Intensive Care) datasets and diabetes datasets have been employed to demonstrate the effectiveness of the proposed information architecture. We further discuss the benefits of the separation of semantic interpretation and data storage from the perspective of information system design, and the semantic reasoning towards patient-centric care underpinned by the Semantic Engine.
Tài liệu tham khảo
Aungst, T. D., & Patel, R. (2020). Integrating digital health into the curriculum—considerations on the current landscape and future developments. Journal of Medical Education and Curricular Development, 7, 2382120519901275.
Azaria, A., Ekblaw, A., Vieira, T. & Lippman, A. (2016). Medrec: Using blockchain for medical data access and permission management. 2016 2nd international conference on open and big data (OBD). IEEE, 25–30.
Batini, C., Lenzerini, M., & Navathe, S. B. (1986). A comparative analysis of methodologies for database schema integration. ACM Computing Surveys (CSUR), 18, 323–364.
Baxter, J. S., Gibson, E., Eagleson, R., & Peters, T. M. (2018). The semiotics of medical image segmentation. Medical Image Analysis, 44, 54–71.
Beale, T. 2019. A FHIR experience: consistently inconsistent [Online]. Available: https://wolandscat.net/2019/05/05/a-fhir-experience-consistently-inconsistent/. Accessed 23 Feb 2023.
Bender, D. & Sartipi, K. (2013). HL7 FHIR: An Agile and RESTful approach to healthcare information exchange. Proceedings of the 26th IEEE international symposium on computer-based medical systems. IEEE, 326–331.
Beredimas, N., Kilintzis, V., Chouvarda, I. & Maglaveras, N. (2015). A reusable ontology for primitive and complex HL7 FHIR data types. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2547–2550.
Blobel, B. (2019). Challenges and solutions for designing and managing pHealth ecosystems. Frontiers in Medicine, 6, 83.
Bodenreider, O. (2008). Issues in mapping LOINC laboratory tests to SNOMED CT. AMIA Annual Symposium Proceedings. American Medical Informatics Association, 51.
Brödner, P. (2019). Coping with Descartes’ error in information systems. AI & SOCIETY, 34, 203–213.
Chandler, D. (2017). Semiotics: The basics. Taylor & Francis.
Chartier, J.-F., Pulizzotto, D., Chartrand, L., & Meunier, J.-G. (2019). A data-driven computational semiotics: The semantic vector space of Magritte’s artworks. Semiotica, 2019, 19–69.
Dolin, R., Boxwala, A., & Shalaby, J. (2018). A pharmacogenomics clinical decision support service based on FHIR and CDS Hooks. Methods of Information in Medicine, 57, e115–e123.
Dusetzina, S. B., Tyree, S., Meyer, A.-M., Meyer, A., Green, L. & Carpenter, W. R. (2014). Linking Data for Health Services Research: A Framework and Instructional Guide. Agency for Healthcare Research and Quality (US).
Eco, U. (1979). A theory of semiotics. Indiana University Press.
El-Sappagh, S., Ali, F., Hendawi, A., Jang, J.-H., & Kwak, K.-S. (2019). A mobile health monitoring-and-treatment system based on integration of the SSN sensor ontology and the HL7 FHIR standard. BMC Medical Informatics and Decision Making, 19, 97.
Firely. (2015). The FHIR registry [Online]. Available: https://simplifier.net/. Accessed 23 Feb 2023.
Geraci, A. (1990). IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. Institute of Electrical and Electronics Engineers Inc.
Grimson, J., Grimson, W., & Hasselbring, W. (2000). The SI challenge in health care. Communications of the ACM, 43, 48–55.
Guo, H., Scriney, M., Liu, K. (2023). FHIR Knowledge Graph Generation (v1.0) [Online]. Available: https://zenodo.org/record/7545834#.Y8hL9ezMLAM. Accessed 23 Feb 2023.
Haux, R. (2006). Health information systems–past, present, future. International Journal of Medical Informatics, 75, 268–281.
He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25, 30–36.
HL7. (2022). Guide to resources [Online]. Available: https://www.hl7.org/fhir/resourceguide.html. Accessed 23 Feb 2023.
HL7 International. (1987). Health level 7 [Online]. Available: http://www.hl7.org/. Accessed 23 Feb 2023.
HL7 International. (2011). FHIR Overview - Architects [Online]. Available: https://www.hl7.org/fhir/overview-arch.html. Accessed 23 Feb 2023.
HL7 International. (2019). impedance differences between FHIR and ontologies [Online]. Available: https://www.hl7.org/fhir/rdf.html. Accessed 23 Feb 2023.
HL7 International. (2022). FHIR Conformance [Online]. Available: https://www.hl7.org/fhir/conformance-rules.html. Accessed 23 Feb 2023.
Holzinger, A., Dehmer, M., & Jurisica, I. (2014). Knowledge discovery and interactive data mining in bioinformatics-state-of-the-art, future challenges and research directions. BMC Bioinformatics, 15, 1–9.
Information Technology Industry Council. (2018). Cloud Healthcare Pledge [Online]. Available: https://www.itic.org/public-policy/CloudHealthcarePledge.pdf. Accessed 23 Feb 2023.
European Committee for Standardization (CEN) (2019) ISO 13606 [Online]. Available: https://www.en13606.org/. Accessed 23 Feb 2023.
Jiang, G., Kiefer, R. C., Rasmussen, L. V., Solbrig, H. R., Mo, H., Pacheco, J. A., Xu, J., Montague, E., Thompson, W. K., & Denny, J. C. (2016). Developing a data element repository to support EHR-driven phenotype algorithm authoring and execution. Journal of Biomedical Informatics, 62, 232–242.
Jiang, G., Kiefer, R. C., Sharma, D. K., Prud’hommeaux, E., & Solbrig, H. R. (2017). A consensus-based approach for harmonizing the OHDSI common data model with HL7 FHIR. Studies in Health Technology and Informatics, 245, 887.
Jiang, G., Solbrig, H. R., Kiefer, R. C., Rasmussen, L. V., Mo, H., Pacheco, J. A., Montague, E. N., Xu, J., Speltz, P. & Thompson, W. K. (2015). Harmonization of Quality Data Model with HL7 FHIR to Support EHR-driven Phenotype Authoring and Execution: A Pilot Study. AMIA
Joshi, R., Didier, P., Jimenez, J. & Carey, T. (2017). The industrial internet of things volume G5: connectivity framework. Industrial Internet Consortium Report.
Kankanhalli, A., Hahn, J., Tan, S., & Gao, G. (2016). Big data and analytics in healthcare: Introduction to the special section. Information Systems Frontiers, 18, 233–235.
Kiourtis, A., Nifakos, S., Mavrogiorgou, A., & Kyriazis, D. (2019). Aggregating the syntactic and semantic similarity of healthcare data towards their transformation to HL7 FHIR through ontology matching. International Journal of Medical Informatics, 132, 104002.
Kraus, S. (2018). Investigating the Capabilities of FHIR Search for Clinical Trial Phenotyping. German Medical Data Sciences: A Learning Healthcare System: Proceedings of the 63rd Annual Meeting of the German Association of Medical Informatics, Biometry and Epidemiology (gmds eV) 2018 in Osnabrück, Germany–GMDS 2018. IOS Press, 3.
Kubick, W. (2016). CR 3.0-A Manifesto for The Next Generation of Clinical Research Data Standards [Online]. Available: https://waynekubick.com/2016/08/30/cr-3-0-a-manifesto-for-the-next-generation-of-clinical-research-data-standards/. Accessed 23 Feb 2023.
Lal, M. (2015). Neo4j graph data modeling. Packt Publishing Ltd.
Leeds-Hurwitz, W. (1993). Semiotics and communication: Signs, codes, cultures. Routledge.
Leroux, H., Metke-Jimenez, A., & Lawley, M. J. (2017). Towards achieving semantic interoperability of clinical study data with FHIR. Journal of Biomedical Semantics, 8, 41.
Li, S., Da Xu, L., & Zhao, S. (2015). The internet of things: a survey. Information Systems Frontiers, 17, 243–259.
Liszka, J. J. (1990). Peirce’s interpretant. Transactions of the Charles S. Peirce Society, 26, 17–62.
Liu, K., & Li, W. (2015). Organisational semiotics for business informatics. Routledge Abingdon.
Liu, K., Nakata, K., & Harty, C. (2010). Pervasive informatics: Theory, practice and future directions. Intelligent Buildings International, 2, 5–19.
Malcolm, N. (1954). Wittgenstein’s Philosophical investigations. The Philosophical Review, 63, 530–559.
Mandel, J. C., Kreda, D. A., Mandl, K. D., Kohane, I. S., & Ramoni, R. B. (2016). SMART on FHIR: A standards-based, interoperable apps platform for electronic health records. Journal of the American Medical Informatics Association, 23, 899–908.
Mavrogiorgou, A., Kiourtis, A., Touloupou, M., Kapassa, E., & Kyriazis, D. (2019). Internet of medical things (IoMT): Acquiring and transforming data into HL7 FHIR through 5G network slicing. Emerging Science Journal, 3, 64–77.
McClure, R. C., Macumber, C. L., Skapik, J. L., & Smith, A. M. (2020). Igniting harmonized digital clinical quality measurement through terminology, CQL, and FHIR. Applied Clinical Informatics, 11, 023–033.
McDonald, C. J., Huff, S. M., Suico, J. G., Hill, G., Leavelle, D., Aller, R., Forrey, A., Mercer, K., DeMoor, G., & Hook, J. (2003). LOINC, a universal standard for identifying laboratory observations: A 5-year update. Clinical Chemistry, 49, 624–633.
McKenzie, L. (2016). FHIR for architects [Online]. Available: https://www.academia.edu/28838227/FHIR_for_Architects. Accessed 23 Feb 2023.
Mettler, M. (2016). Blockchain technology in healthcare: The revolution starts here. 2016 IEEE 18th international conference on e-health networking, applications and services (Healthcom). IEEE, 1–3.
Moreira, J., Pires, L. F., van Sinderen, M. & Daniele, L. (2018). SAREF4health: IoT Standard-Based Ontology-Driven Healthcare Systems. FOIS. 239–252.
Mouttham, A., Kuziemsky, C., Langayan, D., Peyton, L., & Pereira, J. (2012). Interoperable support for collaborative, mobile, and accessible health care. Information Systems Frontiers, 14, 73–85.
NHS. (2020). FHIR UK Core [Online]. Available: https://digital.nhs.uk/services/fhir-uk-core. Accessed 23 Feb 2023.
Nie, D. & Roantree, M. (2019). Detecting Multi-Relationship Links in Sparse Datasets. 21st International Conference on Enterprise Information Systems (ICEIS). ICEIS.
open EHR (2003). Open industry specifications, models and software for e-health. Available: https://www.openehr.org/.
Ouksel, A. M., & Sheth, A. (1999). Semantic interoperability in global information systems. ACM Sigmod Record, 28, 5–12.
Peirce, C. S. (1958). Collected Papers: Science and philosophy and Reviews, correspondence, and bibliography. Belknap Press of Harvard University Press.
Pelzang, R. (2010). Time to learn: Understanding patient-centred care. British Journal of Nursing, 19, 912–917.
Peng, C., & Goswami, P. (2019). Meaningful integration of data from heterogeneous health services and home environment based on ontology. Sensors, 19, 1747.
Pfaff, E. R., Champion, J., Bradford, R. L., Clark, M., Xu, H., Fecho, K., Krishnamurthy, A., Cox, S., Chute, C. G., & Taylor, C. O. (2019). Fast healthcare interoperability resources (FHIR) as a meta model to integrate common data models: Development of a tool and quantitative validation study. JMIR Medical Informatics, 7, e15199.
Plastiras, P., O'Sullivan, D. & Weller, P. (2014). An ontology-driven information model for interoperability of personal and electronic health records. The Sixth International Conference on eHealth, Telemedicine, and Social Medicine. eTELEMED.
Reyes-Galaviz, O. F., Pedrycz, W., He, Z., & Pizzi, N. J. (2017). A supervised gradient-based learning algorithm for optimized entity resolution. Data & Knowledge Engineering, 112, 106–129.
Rosenau, L., Majeed, R. W., Ingenerf, J., Kiel, A., Kroll, B., Köhler, T., Prokosch, H.-U., & Gruendner, J. (2022). Generation of a Fast Healthcare Interoperability Resources (FHIR)-based Ontology for Federated Feasibility Queries in the Context of COVID-19: Feasibility Study. JMIR Medical Informatics, 10, e35789.
Ryan, A. (2006). Towards semantic interoperability in healthcare: ontology mapping from SNOMED-CT to HL7 version 3. Proceedings of the second Australasian workshop on Advances in ontologies-Volume 72. Citeseer, 69–74.
Sackett, D. L. (1997). Evidence-based medicine. Seminars in perinatology (pp. 3–5). Elsevier.
Saripalle, R., Runyan, C., & Russell, M. (2019). Using HL7 FHIR to achieve interoperability in patient health record. Journal of Biomedical Informatics, 94, 103188.
Savan, D. (1987). An Introduction to CS Peirce's Full System of Semeiotic Toronto Semiotic Circle, Victoria College in the University of Toronto.
Sayeed, R., Gottlieb, D., & Mandl, K. D. (2020). SMART Markers: Collecting patient-generated health data as a standardized property of health information technology. NPJ Digital Medicine, 3, 1–8.
Scriney, M., McCarthy, S., McCarren, A., Cappellari, P., & Roantree, M. (2019). Automating data mart construction from semi-structured data sources. The Computer Journal, 62, 394–413.
Staab, S. (2019) Concepts in Application Context. International Conference on Formal Concept Analysis. Springer, 45–52.
Stewart, M. (2001). Towards a global definition of patient centred care: the patient should be the judge of patient centred care. British Medical Journal Publishing Group.
Targon, V. (2018). Toward semiotic artificial intelligence. Procedia Computer Science, 145, 555–563.
Tolk, A., Diallo, S. Y., & Turnitsa, C. D. (2007). Applying the levels of conceptual interoperability model in support of integratability, interoperability, and composability for system-of-systems engineering. Journal of Systems. Cybernetics, and Informatics, 5, 65–74.
Tute, E., Scheffner, I., & Marschollek, M. (2021). A method for interoperable knowledge-based data quality assessment. BMC Medical Informatics and Decision Making, 21, 1–14.
Wagholikar, K. B., Mandel, J. C., Klann, J. G., Wattanasin, N., Mendis, M., Chute, C. G., Mandl, K. D., & Murphy, S. N. (2017). SMART-on-FHIR implemented over i2b2. Journal of the American Medical Informatics Association, 24, 398–402.
Wallender, W., Grimes, D., Henderson, D., & Stromberg, L. (1979). Estimating the Contribution of a Perched Water Table to the Seasonal Evapotranspiration of Cotton 1. Agronomy Journal, 71, 1056–1060.
Wittgenstein, L. (1953). Philosophical Investigations. Macmillan.
Xu, H., Cox, S., Stillwell, L., Pfaff, E., Champion, J., Ahalt, S. C., & Fecho, K. (2020). FHIR PIT: An open software application for spatiotemporal integration of clinical data and environmental exposures data. BMC Medical Informatics and Decision Making, 20, 1–8.
Yue, X., Wang, H., Jin, D., Li, M., & Jiang, W. (2016). Healthcare data gateways: Found healthcare intelligence on blockchain with novel privacy risk control. Journal of Medical Systems, 40, 1–8.
Zhang, P., White, J., Schmidt, D. C., Lenz, G., & Rosenbloom, S. T. (2018). FHIRChain: Applying blockchain to securely and scalably share clinical data. Computational and Structural Biotechnology Journal, 16, 267–278.
Zong, N., Stone, D. J., Sharma, D. K., Wen, A., Wang, C., Yu, Y., Huang, M., Liu, S., Liu, H., & Shi, Q. (2021). Modeling cancer clinical trials using HL7 FHIR to support downstream applications: A case study with colorectal cancer data. International Journal of Medical Informatics, 145, 104308.