An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes

Cell Systems - Tập 4 Số 6 - Trang 587-599.e4 - 2017
Dorte B. Bekker-Jensen1, Christian D. Kelstrup1, Tanveer S. Batth1, Sara C. Buch-Larsen1, Christa Haldrup2, Jesper B. Bramsen2, Karina D. Sørensen2, S. Høyer3, Torben F. Ørntoft2, Claus L. Andersen2, Michael L. Nielsen1, Jesper V. Olsen1
1Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
2Departments of Molecular Medicine and Clinical Medicine, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
3Institute of Pathology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arabi, 2012, Proteomic screen reveals Fbw7 as a modulator of the NF-kappa B pathway, Nat. Commun., 3, 976, 10.1038/ncomms1975

Batth, 2014, Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics, J. Proteome Res., 13, 6176, 10.1021/pr500893m

Beck, 2011, The quantitative proteome of a human cell line, Mol. Syst. Biol., 7, 549, 10.1038/msb.2011.82

Boisvert, 2012, A quantitative spatial proteomics analysis of proteome turnover in human cells, Mol. Cell. Proteomics, 11, M111, 10.1074/mcp.M111.011429

Branca, 2014, HiRIEF LC-MSMS enables deep proteome coverage and unbiased proteogenomics, Nat. Methods, 11, 59, 10.1038/nmeth.2732

Colaert, 2009, Improved visualization of protein consensus sequences by iceLogo, Nat. Methods, 6, 786, 10.1038/nmeth1109-786

de Godoy, 2008, Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast, Nature, 455, 1251, 10.1038/nature07341

Eriksson, 2007, Improving the success rate of proteome analysis by modeling protein-abundance distributions and experimental designs, Nat. Biotechnol., 25, 651, 10.1038/nbt1315

Ezkurdia, 2014, Analyzing the first drafts of the human proteome, J. Proteome Res., 13, 3854, 10.1021/pr500572z

Francavilla, 2016, Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking, Nat. Struct. Mol. Biol., 23, 608, 10.1038/nsmb.3218

Geiger, 2012, Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins, Mol. Cell. Proteomics, 11, M111, 10.1074/mcp.M111.014050

Giansanti, 2015, An augmented multiple-protease-based human phosphopeptide atlas, Cell Rep., 11, 1834, 10.1016/j.celrep.2015.05.029

Giansanti, 2016, Six alternative proteases for mass spectrometry-based proteomics beyond trypsin, Nat. Protoc., 11, 993, 10.1038/nprot.2016.057

Guillaume, 2010, Two abundant proteasome subtypes that uniquely process some antigens presented by HLA class I molecules, Proc. Natl. Acad. Sci. USA, 107, 18599, 10.1073/pnas.1009778107

Guo, 2014, Confetti: a multiprotease map of the HeLa proteome for comprehensive proteomics, Mol. Cell. Proteomics, 13, 1573, 10.1074/mcp.M113.035170

Hanke, 2008, Absolute SILAC for accurate quantitation of proteins in complex mixtures down to the attomole level, J. Proteome Res., 7, 1118, 10.1021/pr7007175

Hebert, 2014, The one hour yeast proteome, Mol. Cell. Proteomics, 13, 339, 10.1074/mcp.M113.034769

Hornbeck, 2004, PhosphoSite: a bioinformatics resource dedicated to physiological protein phosphorylation, Proteomics, 4, 1551, 10.1002/pmic.200300772

Hunter, 2007, The age of crosstalk: phosphorylation, ubiquitination, and beyond, Mol. Cell, 28, 730, 10.1016/j.molcel.2007.11.019

Huttlin, 2010, A tissue-specific atlas of mouse protein phosphorylation and expression, Cell, 143, 1174, 10.1016/j.cell.2010.12.001

Iwasaki, 2014, Challenges facing complete human proteome analysis, Chromatography, 35, 73, 10.15583/jpchrom.2014.013

Iwasaki, 2012, Human proteome analysis by using reversed phase monolithic silica capillary columns with enhanced sensitivity, J. Chromatogr. A, 1228, 292, 10.1016/j.chroma.2011.10.059

Kelstrup, 2012, Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer, J. Proteome Res., 11, 3487, 10.1021/pr3000249

Kelstrup, 2014, Rapid and deep proteomes by faster sequencing on a benchtop quadrupole ultra-high-field Orbitrap mass spectrometer, J. Proteome Res., 13, 6187, 10.1021/pr500985w

Kim, 2013, TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol., 14, R36, 10.1186/gb-2013-14-4-r36

Kim, 2014, A draft map of the human proteome, Nature, 509, 575, 10.1038/nature13302

Kleifeld, 2010, Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products, Nature, 28, 281

Kusebauch, 2016, Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome, Cell, 166, 766, 10.1016/j.cell.2016.06.041

Kutmon, 2015, PathVisio 3: an extendable pathway analysis toolbox, PLoS Comput. Biol., 11, e1004085, 10.1371/journal.pcbi.1004085

Lawrence, 2015, The proteomic landscape of triple-negative breast cancer, Cell Rep., 11, 630, 10.1016/j.celrep.2015.03.050

Low, 2013, Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis, Cell Rep., 5, 1469, 10.1016/j.celrep.2013.10.041

Lundby, 2012, Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues, Nat. Commun., 3, 876, 10.1038/ncomms1871

Masters, 2002, HeLa cells 50 years on: the good, the bad and the ugly, Nat. Rev. Cancer, 2, 315, 10.1038/nrc775

Meggio, 2003, One-thousand-and-one substrates of protein kinase CK2?, FASEB J., 17, 349, 10.1096/fj.02-0473rev

Mertins, 2013, Integrated proteomic analysis of post-translational modifications by serial enrichment, Nat. Methods, 10, 634, 10.1038/nmeth.2518

Mertins, 2016, Proteogenomics connects somatic mutations to signalling in breast cancer, Nature, 534, 55, 10.1038/nature18003

Nagaraj, 2011, Deep proteome and transcriptome mapping of a human cancer cell line, Mol. Syst. Biol., 7, 548, 10.1038/msb.2011.81

Nagaraj, 2012, System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap, Mol. Cell. Proteomics, 11, 10.1074/mcp.M111.013722

Olsen, 2013, Status of large-scale analysis of post-translational modifications by mass spectrometry, Mol. Cell. Proteomics, 12, 3444, 10.1074/mcp.O113.034181

Olsen, 2004, Trypsin cleaves exclusively C-terminal to arginine and lysine residues, Mol. Cell. Proteomics, 3, 608, 10.1074/mcp.T400003-MCP200

Olsen, 2007, Higher-energy C-trap dissociation for peptide modification analysis, Nat. Methods, 4, 709, 10.1038/nmeth1060

Olsen, 2010, Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis, Sci. Signal., 3, ra3, 10.1126/scisignal.2000475

Ongen, 2014, Putative cis-regulatory drivers in colorectal cancer, Nature, 512, 87, 10.1038/nature13602

Puntervoll, 2003, ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins, Nucleic Acids Res., 31, 3625, 10.1093/nar/gkg545

Ruepp, 2008, CORUM: the comprehensive resource of mammalian protein complexes, Nucleic Acids Res., 36, D646, 10.1093/nar/gkm936

Ruepp, 2010, CORUM: the comprehensive resource of mammalian protein complexes – 2009, Nucleic Acids Res., 38, D497, 10.1093/nar/gkp914

Savitski, 2015, A scalable approach for protein false discovery rate estimation in large proteomic data sets, Mol. Cell. Proteomics, 14, 2394, 10.1074/mcp.M114.046995

Schwanhausser, 2011, Global quantification of mammalian gene expression control, Nature, 473, 337, 10.1038/nature10098

Sharma, 2014, Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling, Cell Rep., 8, 1583, 10.1016/j.celrep.2014.07.036

Shaw, 2002, Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells, FASEB J., 16, 869, 10.1096/fj.01-0995fje

Shishkova, 2016, Now, more than ever, proteomics needs better chromatography, Cell Syst., 3, 321, 10.1016/j.cels.2016.10.007

Spicer, 2016, 3D HPLC-MS with reversed-phase separation functionality in all three dimensions for large-scale bottom-up proteomics and peptide retention data collection, Anal. Chem., 88, 2847, 10.1021/acs.analchem.5b04567

Swaney, 2010, Value of using multiple proteases for large-scale mass spectrometry-based proteomics, J. Proteome Res., 9, 1323, 10.1021/pr900863u

Swaney, 2013, Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation, Nat. Methods, 10, 676, 10.1038/nmeth.2519

Szklarczyk, 2015, STRING v10: protein-protein interaction networks, integrated over the tree of life, Nucleic Acids Res., 43, D447, 10.1093/nar/gku1003

Thakur, 2011, Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation, Mol. Cell. Proteomics, 10, M110, 10.1074/mcp.M110.003699

The, 2016, Fast and accurate protein false discovery rates on large-scale proteomics data sets with percolator 3.0, J. Am. Soc. Mass Spectrom., 27, 1719, 10.1007/s13361-016-1460-7

Ting, 2011, MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics, Nat. Methods, 8, 937, 10.1038/nmeth.1714

Trapnell, 2010, Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation, Nat. Biotechnol., 28, 511, 10.1038/nbt.1621

Tyanova, 2016, The MaxQuant computational platform for mass spectrometry-based shotgun proteomics, Nat. Protoc., 11, 2301, 10.1038/nprot.2016.136

Tyanova, 2016, The Perseus computational platform for comprehensive analysis of (prote)omics data, Nat. Methods, 13, 731, 10.1038/nmeth.3901

Van Hoof, 2009, Phosphorylation dynamics during early differentiation of human embryonic stem cells, Cell Stem Cell, 5, 214, 10.1016/j.stem.2009.05.021

Vizcaino, 2014, ProteomeXchange provides globally coordinated proteomics data submission and dissemination, Nat. Biotechnol., 32, 223, 10.1038/nbt.2839

von Stechow, 2015, Recent findings and technological advances in phosphoproteomics for cells and tissues, Expert Rev. Proteomics, 12, 469, 10.1586/14789450.2015.1078730

Wang, 2011, Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells, Proteomics, 11, 2019, 10.1002/pmic.201000722

Wilhelm, 2014, Mass-spectrometry-based draft of the human proteome, Nature, 509, 582, 10.1038/nature13319

Wisniewski, 2009, Universal sample preparation method for proteome analysis, Nat. Methods, 6, 359, 10.1038/nmeth.1322

Wisniewski, 2014, A “proteomic ruler” for protein copy number and concentration estimation without spike-in standards, Mol. Cell. Proteomics, 13, 3497, 10.1074/mcp.M113.037309

Wolters, 2001, An automated multidimensional protein identification technology for shotgun proteomics, Anal. Chem., 73, 5683, 10.1021/ac010617e

Yamana, 2013, Rapid and deep profiling of human induced pluripotent stem cell proteome by one-shot Nanolc-MS/MS analysis with meter-scale monolithic silica columns, J. Proteome Res., 12, 214, 10.1021/pr300837u

Zeiler, 2012, A Protein Epitope Signature Tag (PrEST) library allows SILAC-based absolute quantification and multiplexed determination of protein copy numbers in cell lines, Mol. Cell. Proteomics, 11, 10.1074/mcp.O111.009613