An MHD Navier’s Slip Flow Over Axisymmetric Linear Stretching Sheet Using Differential Transform Method

U. S. Mahabaleshwar1, K. R. Nagaraju2, P. N. Vinay Kumar3, Neil A. Kelson4
1Department of Mathematics, Government First Grade College for Women, Hassan, India
2Department of Mathematics, Government Engineering College, Hassan, India
3Department of Mathematics, SHDD Government First Grade College, Paduvalahippe, Hassan, India
4HPC and Research Support Group, Queensland University of Technology (QUT), Brisbane, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sakiadis, B.C.: Boundary layer behavior on continuous solid surface: I. Boundary-layer equations for two-dimensional and axisymmetric flow. J. AIChE 7, 26–28 (1961)

Sakiadis, B.C.: Boundary layer behavior on continuous solid surface: II. Boundary-layer equations for two-dimensional and axisymmetric flow. J. AIChE 7, 221–225 (1961)

Crane, L.J.: Flow past a stretching plate. Z. Angew. Math. Phys. (ZAMP) 21(4), 645–647 (1970)

Navier, C.L.M.H.: Mémoire sur les lois du mouvement des fluids. Mém. Acad. R. Sci. Inst. Fr. 6, 389 (1823)

Gorder, R.A.V., Sweet, E., Vajravelu, K.: Nano boundary layers over stretching surfaces. Commun. Nonlinear Sci. Numer. Simul. 15, 1494–1500 (2010)

Wang, C.Y.: Flow due to a stretching boundary with partial slip—an exact solution of the Navier–Stokes equations. Chem. Eng. Sci. 57(17), 3745–3747 (2002)

Pukhov, G.E.: Differential transforms and circuit theory. Int. J. Circ. Theor. Appl. 10, 265 (1982)

Zhou, J.K.: Differential Transformation and Its Application for Electrical Circuits. Huazhong University Press, Wuhan (1986)

Baker, G.A., Graves-Marris, P.: Pade Approximants. Cambridge University Publications, Cambridge (1996)

Peker, H.A., Karaoglu, O., Oturanc, O.: The differential transformation method and Pade approximant for a form of MHD Blasius flow. Math. Comput. Appl. 16(2), 507–513 (2011)

Jang, M.J., Chen, C.L., Liu, Y.C.: On solving the initial value problems using the differential transformation method. Appl. Math. Comput. 115, 145–160 (2000)

Arikoglu, A., Ozkol, I.: Solution of difference equations by using differential transform method. Appl. Math. Comput. 174, 1216–1228 (2006)

Kurnaz, A., Oturanc, G.: The differential transform approximation for system of ordinary differential equations. Int. J. Comput. Math. 82, 709–719 (2005)

Hassan, I.H.A.H.: Application to differential transformation method for solving systems of differential equations. Appl. Math. Model. 32, 2552–2559 (2008)

Rashidi, M.M.: The modified differential transform method for solving MHD boundary-layer equations. Comput. Phys. Commun. 180, 2210–2217 (2009)

Fang, T., Zhang, J., Yao, S.: Slip MHD viscous flow over a stretching sheet—an exact solution. Commun. Nonlinear Sci. Numer. Simul. 14, 3731–3737 (2009)

Andersson, H.I.: Slip flow past a stretching surface. Acta Mech. 158, 121–125 (2002)

Wang, C.Y.: Analysis of viscous flow due to a stretching sheet with surface slip and suction. Nonlinear Anal. Real World Appl. 10(1), 375–380 (2009)

Pop, I., Na, T.Y.: A note on MHD flow over a stretching permeable surface. Mech. Res. Commun. 25(3), 263–269 (1998)

Gupta, P.S., Gupta, A.S.: Heat and mass transfer on a stretching sheet with suction/blowing. Can. J. Chem. Eng. 55, 744–746 (1977)

Mahabaleshwar, U.S., Vinay Kumar, P.N., Sheremet, M.: Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction. Springer Plus 5(1), 1901–1908 (2016)

Pavlov, K.B.: Magnetohydrodynamic flow of an incompressible viscous liquid caused by deformation of plane surface. Magn. Gidrodin 4, 146–147 (1974)

Siddappa, B., Abel, M.S.: Non-Newtonian flow past a stretching plate. Zeitschrift für angewandte Math. Phys. 36, 890–892 (1985)

Siddheshwar, P.G., Mahabaleshwar, U.S.: Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet. Int. J. Non-Linear Mech. 40, 807–820 (2005)

Boyd, J.P.: Padé approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain. Comput. Phys. 11, 299–303 (1997)