An LQP-Based Symmetric Alternating Direction Method of Multipliers with Larger Step Sizes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)
He, B., Xu, Y., Yuan, X.: A logarithmic-quadratic proximal prediction–correction method for structured monotone variational inequalities. Comput. Optim. Appl. 35, 19–46 (2006)
He, B., Ma, F., Yuan, X.: Convergence study on the symmetric version of ADMM with larger step sizes. SIAM J. Imaging Sci. 9, 1467–1501 (2016)
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2, 17–40 (1976)
Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. Rev. Francaise Automat. Inform. Rech. Opér. Sér. Rouge Anal. Numér 9, 41–76 (1975)
Eckstein, J., Yao, W.: Understanding the convergence of the alternating direction method of multipliers: theoretical and computational perspectives. Pac. J. Optim. 11, 619–644 (2015)
He, B., Yuan, X.: On the $$O(1/n)$$ convergence rate of the Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50, 700–709 (2012)
He, B., Liu, H., Wang, Z., Yuan, X.: A strictly contractive Peaceman–Rachford splitting method for convex programming. SIAM J. Optim. 24, 1011–1040 (2014)
Auslender, A., Teboulle, M., Ben-Tiba, S.: A logarithmic-quadratic proximal method for variational inequalities. In: Computational Optimization, pp. 31–40. Springer (1999)
Li, M., Yuan, X.: A strictly contractive Peaceman–Rachford splitting method with logarithmic-quadratic proximal regularization for convex programming. Math. Oper. Res. 40, 842–858 (2015)
Yuan, X., Li, M.: An LQP-based decomposition method for solving a class of variational inequalities. SIAM J. Optim. 21, 1309–1318 (2011)
Auslender, A., Teboulle, M.: Entropic proximal decomposition methods for convex programs and variational inequalities. Math. Program. 91, 33–47 (2001)
Auslender, A., Teboulle, M.: The log-quadratic proximal methodology in convex optimization algorithms and variational inequalities. In: Equilibrium Problems and Variational Models, pp. 19–52. Springer (2003)
Han, D.: A hybrid entropic proximal decomposition method with self-adaptive strategy for solving variational inequality problems. Comput. Math. Appl. 55, 101–115 (2008)
Bai, J., Zhang, H., Li, J., Xu, F.: Generalized symmetric ADMM for separable convex optimization. Comput. Optim. Appl. 70(1), 129–170 (2018)
Gu, Y., Jiang, B., Han, D.: A semi-proximal-based strictly contractive Peaceman–Rachford splitting method. arXiv:1506.02221 (2015)
Chen, C., Li, M., Yuan, X.: Further study on the convergence rate of alternating direction method of multipliers with logarithmic-quadratic proximal regularization. J. Optim. Theory Appl. 166, 906–929 (2015)
Li, M., Li, X., Yuan, X.: Convergence analysis of the generalized alternating direction method of multipliers with logarithmic-quadratic proximal regularization. J. Optim. Theory Appl. 164, 218–233 (2015)
Kontogiorgis, S., Meyer, R.: A variable-penalty alternating directions method for convex optimization. Math. Program. 83, 29–53 (1998)
Tao, M., Yuan, X.: On the O(1/$$t$$) convergence rate of alternating direction method with logarithmic-quadratic proximal regularization. SIAM J. Optim. 22, 1431–1448 (2012)
He, H., Wang, K., Cai, X., Han, D.: An LQP-based two-step method for structured variational inequalities. J. Oper. Res. Soc. China 5, 301–317 (2017)
Nagurney, A., Zhang, D.: Projected Dynamical Systems and Variational Inequalities with Applications. International Series in Operations Research and Management Science. Springer, New York (1996)