An Intercomparison of Deep-Learning Methods for Super-Resolution Bias-Correction (SRBC) of Indian Summer Monsoon Rainfall (ISMR) Using CORDEX-SA Simulations
Tóm tắt
The Indian Summer Monsoon Rainfall (ISMR) plays a significant role in India’s agriculture and economy. Our understanding of the climate dynamics of the Indian summer monsoon has been enriched with general circulation models (GCMs) and regional climate models (RCMs). Systematic bias associated with these numerical simulations, however, needs to be corrected before we can obtain accurate or reliable projections of the future. Therefore, this study applies two state-of-the-art deep-learning (DL)-based super-resolution bias correction (SRBC) methods, viz. Autoencoder-Decoder (ACDC) and a deeper network Residual Neural Network (ResNet) to perform spatial downscaling and bias-correction on high-resolution CORDEX-SA climatic simulations of precipitation. To do so, we obtained eight meteorological variables from CORDEX-SA RCM simulations along with a digital elevation model at a spatial resolution of 0.25°×0.25° as input. Indian Monsoon Data Assimilation and Analysis, precipitation reanalysis re-grided to 0.05°×0.05° spatial resolution is chosen as output for the training period 1979–2005. To evaluate the DL algorithms, the RCP 2.6 scenario of CORDEX-SA future simulations for the period 2006–2020 is chosen. Moreover, we also conducted a performance assessment of the representation of mean, variability, extreme, and frequency of rainfall associated with ISMR. The results of the experiments show that the DL method ResNet a highly efficient in (i) improving the spatial resolution of the climatic simulations from 0.25°×0.25° to 0.05°×0.05°, (ii) reducing the systematic biases of the extreme rainfall of ISMR from 21.18 mm to -7.86 mm, and (iii) providing a robust bias-corrected climate simulation of ISMR for future climate mitigation and adaptation studies.
Tài liệu tham khảo
Aggarwal, D., Attada, R., Shukla, K.K., Chakraborty, R., Kunchala, R.K.: Monsoon precipitation characteristics and extreme precipitation events over Northwest India using indian high resolution regional reanalysis. Atmos. Res. 267, 105993 (2022). https://doi.org/10.1016/J.ATMOSRES.2021.105993
Archambault, T., Alexandre Charantonis, A., Béréziat, D., Mejia, C., Thiria, S., Archambault, T., Charantonis, A., Béréziat, D., Mejia, C., Thiria, S.: SSH super-resolution using high resolution SST with a subpixel convolutional residual network. Environ. Data Sci. 4, 1–9 (2022). https://hal.sorbonne-universite.fr/hal-03619091
Ashrit, R., Indira Rani, S., Kumar, S., Karunasagar, S., Arulalan, T., Francis, T., Routray, A., Laskar, S.I., Mahmood, S., Jermey, P., Maycock, A., Renshaw, R., George, J.P., Rajagopal, E.N.: IMDAA Regional reanalysis: Performance evaluation during indian summer monsoon season. J. Geophys. Research: Atmos. 125(2), e2019JD030973 (2020). https://doi.org/10.1029/2019JD030973
Barde, V., Nageswararao, M.M., Mohanty, U.C., Panda, R.K.: Performance of the CORDEX-SA regional climate models in simulating summer monsoon rainfall and future projections over East India. Pure. Appl. Geophys. 180(3), 1121–1142 (2023). https://doi.org/10.1007/S00024-022-03225-3/FIGURES/13
Bedia, J., Baño-Medina, J., Legasa, M.N., Iturbide, M., Manzanas, R., Herrera, S., Casanueva, A., San-Martín, D., Cofiño, A.S., Gutiérrez, J.M.: Statistical downscaling with the downscaleR package (v3.1.0): Contribution to the VALUE intercomparison experiment. Geosci. Model Dev. 13(3), 1711–1735 (2020). https://doi.org/10.5194/GMD-13-1711-2020
Behrens, G., Beucler, T., Gentine, P., Iglesias-Suarez, F., Pritchard, M., Eyring, V.: Non-linear dimensionality reduction with a variational encoder decoder to understand convective processes in climate models. J. Adv. Model. Earth Syst. 14(8) (2022). https://doi.org/10.1029/2022MS003130
Bernstein, L., Bosch, P., Canziani, O., Chen, Z., Christ, R., Riahi, K.: IPCC, 2007: Climate Change 2007: Synthesis Report (2008). http://www.ipcc.ch/publications_and_data/ar4/syr/en/contents.html
Bhaskaran, B., Mitchell, J.F.B., Lavery, J.R., Lal, M.: Climatic response of the indian subcontinent to doubled CO2 concentrations. Int. J. Climatol. 15(8), 873–892 (1995). https://doi.org/10.1002/JOC.3370150804
Bordoy, R., Burlando, P.: Bias correction of regional climate model simulations in a region of complex orography. J. Appl. Meteorol. Climatology. 52(1), 82–101 (2013). https://doi.org/10.1175/JAMC-D-11-0149.1
Cannon, A.J., Sobie, S.R., Murdock, T.Q.: Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J. Clim. 28(17), 6938–6959 (2015). https://doi.org/10.1175/JCLI-D-14-00754.1
Choudhary, A., Dimri, A.P.: On bias correction of summer monsoon precipitation over India from CORDEX-SA simulations. Int. J. Climatol. 39(3), 1388–1403 (2019). https://doi.org/10.1002/JOC.5889
Frías, M.D., Iturbide, M., Manzanas, R., Bedia, J., Fernández, J., Herrera, S., Cofiño, A.S., Gutiérrez, J.M.: An R package to visualize and communicate uncertainty in seasonal climate prediction. Environ. Model. Softw. 99, 101–110 (2018). https://doi.org/10.1016/J.ENVSOFT.2017.09.008
Gadgil, S.: The indian Monsoon and its variability. Annu. Rev. Earth Planet. Sci. 31(1), 429–467 (2003). https://doi.org/10.1146/annurev.earth.31.100901.141251
Ghahremanloo, M., Lops, Y., Choi, Y., Yeganeh, B.: Deep learning estimation of daily ground-level NO2 concentrations from remote sensing data. Undefined. 126(21) (2021). https://doi.org/10.1029/2021JD034925
Ghahremanloo, M., Lops, Y., Choi, Y., Jung, J., Mousavinezhad, S., Hammond, D.: A comprehensive study of the COVID-19 impact on PM 2.5 levels over the contiguous United States: A deep learning approach. Atmos. Environ. (Oxf., Engl: 1994) 272. (2022). https://doi.org/10.1016/J.ATMOSENV.2022.118944
Giorgi, F., Jones, C., Asrar, G.R.: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull. 58(3) (2009). http://wcrp.ipsl
Gleckler, P.J., Taylor, K.E., Doutriaux, C.: Performance metrics for climate models. J. Geophys. Res.: Atmos 113(D6), 6104 (2008). https://doi.org/10.1029/2007JD008972
Goswami, B.N., Venugopal, V., Sangupta, D., Madhusoodanan, M.S., Xavier, P.K.: Increasing trend of extreme rain events over India in a warming environment. Science. 314(5804), 1442–1445 (2006). https://doi.org/10.1126/SCIENCE.1132027/SUPPL_FILE/GOSWAMI.SOM.PDF
Gudmundsson, L., Bremnes, J. B., Haugen, J. E., & Engen-Skaugen, T. (2012). Technical note: downscaling RCM precipitation to the station scale using statistical transformations– A comparison of methods. Hydrol. Earth Syst. Sci. 16(9), 3383–3390. https://doi.org/10.5194/HESS-16-3383-2012
Gutiérrez, J.M., Maraun, D., Widmann, M., Huth, R., Hertig, E., Benestad, R., Roessler, O., Wibig, J., Wilcke, R., Kotlarski, S., San Martín, D., Herrera, S., Bedia, J., Casanueva, A., Manzanas, R., Iturbide, M., Vrac, M., Dubrovsky, M., Ribalaygua, J., …, Pagé, C.: An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment. Int. J. Climatol. 39(9), 3750–3785 (2019). https://doi.org/10.1002/JOC.5462
Gutjahr, O., Heinemann, G.: Comparing precipitation bias correction methods for high-resolution regional climate simulations using COSMO-CLM: Effects on extreme values and climate change signal. Theoret. Appl. Climatol. 114(3–4), 511–529 (2013). https://doi.org/10.1007/S00704-013-0834-Z/FIGURES/16
Hameed, I.A., Rehman, A., Naz, S., Naseem, U., Razzak, I.: Deep autoencoder-decoder framework for semantic segmentation of brain tumor (2019). https://www.researchgate.net/publication/340756047
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. Retrieved September 25, 2022 (2016). From http://image-net.org/challenges/LSVRC/2015/
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., …, Thépaut, J.N.: The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146(730), 1999–2049 (2020). https://doi.org/10.1002/QJ.3803
Hintze, J.L., Nelson, R.D.: Violin plots: a box plot-density trace synergism statistical computing and graphics violin plots: a box plot-density trace synergism (2012). https://doi.org/10.1080/00031305.1998.10480559
Indirarani, S., Arulalan, T., George, J.P., Rajagopal, E.N., Renshaw, R., Maycock, A., Barker, D.M., Rajeevan, M.: IMDAA: High-resolution satellite-era reanalysis for the Indian Monsoon Region. J. Clim 34(12), 5109–5133 (2021). https://doi.org/10.1175/JCLI-D-20-0412.1
IPCC, A: IPCC Fifth Assessment Report—Synthesis Report. IPPC Rome, Italy (2014)
Iturbide, M., Bedia, J., Herrera, S., Baño-Medina, J., Fernández, J., Frías, M.D., Manzanas, R., San-Martín, D., Cimadevilla, E., Cofiño, A.S., Gutiérrez, J.M.: The R-based climate4R open framework for reproducible climate data access and post-processing. Environ. Model. Softw. 111, 42–54 (2019). https://doi.org/10.1016/J.ENVSOFT.2018.09.009
Jacob, D., Teichmann, C., Sobolowski, S., Katragkou, E., Anders, I., Belda, M., Benestad, R., Boberg, F., Buonomo, E., Cardoso, R.M., Casanueva, A., Christensen, O.B., Christensen, J.H., Coppola, E., de Cruz, L., Davin, E.L., Dobler, A., Domínguez, M., Fealy, R., …, Wulfmeyer, V.: Regional climate downscaling over Europe: Perspectives from the EURO-CORDEX community. Reg. Envriron. Chang. 20(2), 1–20 (2020). https://doi.org/10.1007/S10113-020-01606-9/FIGURES/3
Jiang, Z., Li, W., Xu, J., Li, L.: Extreme precipitation indices over China in CMIP5 models. Part I: Model evaluation. J. Clim. 28(21), 8603–8619 (2015). https://doi.org/10.1175/JCLI-D-15-0099.1
Jones, C., Giorgi, F., Asrar, G.: The Coordinated Regional Downscaling Experiment: CORDEX; an international downscaling link to CMIP5. CLIVAR Exchanges, International CLIVAR Project Office (2011)
Kharin, V., Zwiers, F.W., Zhang, X., Hegerl, G.C.: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 20(8), 1419–1444 (2007). https://doi.org/10.1175/JCLI4066.1
Krishna Kumar, K., Patwardhan, S.K., Kulkarni, A., Kamala, K., Rao, K.K., Jones, R.: Simulated projections for summer monsoon climate over India by a high-resolution regional climate model (PRECIS) (2011). http://www.ias.ac.in/currsci/Volumes/101/03/0312.pdf
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM. 60(6), 84–90 (2017). https://doi.org/10.1145/3065386
Leander, R., Buishand, T.A.: Resampling of regional climate model output for the simulation of extreme river flows. J. Hydrol. 332(3–4), 487–496 (2007). https://doi.org/10.1016/J.JHYDROL.2006.08.006
Leander, R., Buishand, T.A., van den Hurk, B.J.J.M., de Wit, M.J.M.: Estimated changes in flood quantiles of the river Meuse from resampling of regional climate model output. J. Hydrol. 351(3–4), 331–343 (2008). https://doi.org/10.1016/J.JHYDROL.2007.12.020
Li, K., Yang, S., Dong, R., Wang, X., Huang, J.: Survey of single image super-resolution reconstruction. IET Image Proc. 14(11), 2273–2290 (2020). https://doi.org/10.1049/IET-IPR.2019.1438
Lim, B., Son, S., Kim, H., Nah, S., Lee, M.: K. Enhanced deep residual networks for single image super-resolution (pp. 136–144) (2017)
Liu, Z., Lee, S.-S., Nellikkattil, A.B., Lee, J.-Y., Dai, L., Ha, K.-J., Franzke, C.L.E.: The east asian summer Monsoon response to global warming in a high resolution coupled Model: Mean and Extremes. Asia-Pac. J. Atmos. Sci. 1–17 (2022). https://doi.org/10.1007/S13143-022-00285-2/FIGURES/10
Lops, Y., Pouyaei, A., Choi, Y., Jung, J., Salman, A.K., Sayeed, A.: Application of a partial convolutional neural network for estimating geostationary aerosol optical depth data. Geophys. Res. Lett. 48(15), e2021GL093096 (2021). https://doi.org/10.1029/2021GL093096
Mahmood, S., Davie, J., Jermey, P., Renshaw, R., George, J.P., Rajagopal, E.N., Rani, S.I.: Indian monsoon data assimilation and analysis regional reanalysis: Configuration and performance. Atmos. Sci. Lett. 19(3), e808 (2018). https://doi.org/10.1002/ASL.808
Maraun, D., Wetterhall, F., Ireson, A.M., Chandler, R.E., Kendon, E.J., Widmann, M., Brienen, S., Rust, H.W., Sauter, T., Themel, M., Venema, V.K.C., Chun, K.P., Goodess, C.M., Jones, R.G., Onof, C., Vrac, M., Thiele-Eich, I.: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 48(3) (2010). https://doi.org/10.1029/2009RG000314
Maraun, D., Widmann, M., Gutiérrez, J.M., Kotlarski, S., Chandler, R.E., Hertig, E., Wibig, J., Huth, R., Wilcke, R.A.: I. VALUE: A framework to validate downscaling approaches for climate change studies. Earth’s Future 3(1), 1–14 (2015). https://doi.org/10.1002/2014EF000259
Maraun, D., Shepherd, T.G., Widmann, M., Zappa, G., Walton, D., Gutiérrez, J.M., Hagemann, S., Richter, I., Soares, P.M.M., Hall, A., Mearns, L.O.: Towards process-informed bias correction of climate change simulations. Nat. Clim. Chang. 7(11), 764–773 (2017). https://doi.org/10.1038/nclimate3418
Nageswararao, M.M., Mohanty, U.C., Osuri, K.K., Ramakrishna, S.S.V.S.: Prediction of winter precipitation over northwest India using ocean heat fluxes. Clim. Dyn. 47(7–8), 2253–2271 (2016). https://doi.org/10.1007/S00382-015-2962-X/FIGURES/11
Nageswararao, M.M., Sannan, M.C., Mohanty, U.C.: Characteristics of various rainfall events over South Peninsular India during northeast monsoon using high-resolution gridded dataset (1901–2016). Theoret. Appl. Climatol. 137(3–4), 2573–2593 (2019). https://doi.org/10.1007/S00704-018-02755-Y/FIGURES/9
Niranjan Kumar, K., Thota, M.S., Ashrit, R., Mitra, A.K., Rajeevan, M.N.: Quantile mapping bias correction methods to IMDAA reanalysis for calibrating NCMRWF unified model operational forecasts. Hydrol. Sci. J. 67(6), 870–885 (2022). https://doi.org/10.1080/02626667.2022.2049272
Nischal, Attada, R., Hunt, K.M.R.: Evaluating winter precipitation over the Western Himalayas in a high-resolution indian regional reanalysis using multi-source climate datasets. J. Appl. Meteorol. Climatol. 1(aop) (2022). https://doi.org/10.1175/JAMC-D-21-0172.1
Pan, S.J., Yang, Q.: A survey on transfer learning (2009). https://doi.org/10.1109/TKDE.2009.191
Pan, W., Xiang, E.W., Liu, N.N., Yang, Q.: Transfer learning in collaborative filtering for sparsity reduction. Proc. AAAI Conf. Artif. Intell. 24(1), 230–235 (2010). https://doi.org/10.1609/AAAI.V24I1.7578
Park, C., Shin, S.-W., Cha, D.-H., Suh, M.-S., Hong, S.-Y., Ahn, J.-B., Min, S.-K., Byun, Y.-H.: Future projections of precipitation using Bias–Corrected High–Resolution Regional Climate Models for sub–regions with homogeneous characteristics in South Korea. Asia-Pac. J. Atmos. Sci. 2022, 1–13 (2022). https://doi.org/10.1007/S13143-022-00292-3
Piani, C., Weedon, G.P., Best, M., Gomes, S.M., Viterbo, P., Hagemann, S., Haerter, J.O.: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrol. 395(3–4), 199–215 (2010). https://doi.org/10.1016/J.JHYDROL.2010.10.024
Prasanna, V.: Statistical bias correction method applied on CMIP5 datasets over the indian region during the summer monsoon season for climate change applications. Theoret. Appl. Climatol. 131(1–2), 471–488 (2018). https://doi.org/10.1007/S00704-016-1974-8/FIGURES/13
Qin, Q., Dou, J., Tu, Z.: Deep ResNet based Remote sensing image Super-Resolution Reconstruction in Discrete Wavelet Domain. Pattern Recognit. Image Anal. 30(3), 541–550 (2020). https://doi.org/10.1134/S1054661820030232/TABLES/4
Rai, P., Choudhary, A., Dimri, A.P.: Future precipitation extremes over India from the CORDEX-South Asia experiments. Theoret. Appl. Climatol. 137(3), 2961–2975 (2019). https://doi.org/10.1007/s00704-019-02784-1
Rajeevan, M., Bhate, J., Jaswal, A.K.: Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 35(18) (2008). https://doi.org/10.1029/2008GL035143
Revadekar, J., Patwardhan, S.K., Rupa Kumar, K.: Characteristic Features of Precipitation Extremes over India in the Warming Scenarios. Adv. Meteorol. 2011, 1–11 (2011). https://doi.org/10.1155/2011/138425
Salvi, K., Kannan, S., Ghosh, S.: Statistical downscaling and bias-correction for projections of Indian rainfall and temperature in climate change studies. 4th International Conference on Environmental and Computer Science, 19, 16–18 (2011)
Samuelsson, P., Jones, C.G., Ulrika Willén, J., Ullerstig, A., Gollvik, S., Hansson, U., Jansson, C., Kjellström, E., Nikulin, G., Wyser, K.: The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A: Dynamic Meteorology and Oceanography 63(1), 4–23 (2011)
Sayeed, A., Choi, Y., Jung, J., Lops, Y., Eslami, E., Salman, A.K.: A deep convolutional neural network model for improving WRF forecasts. Undefined, 1–11 (2021a). https://doi.org/10.1109/TNNLS.2021a.3100902
Sayeed, A., Lops, Y., Choi, Y., Jung, J., Salman, A.K.: Bias correcting and extending the PM forecast by CMAQ up to 7 days using deep convolutional neural networks. Atmos. Environ. 253, 118376 (2021b). https://doi.org/10.1016/J.ATMOSENV.2021.118376
Sayeed, A., Eslami, E., Lops, Y., Choi, Y.: CMAQ-CNN: A new-generation of post-processing techniques for chemical transport models using deep neural networks. Atmos. Environ. 273 (2022). https://doi.org/10.1016/J.ATMOSENV.2022.118961
Schär, C., Vidale, P.L., Lüthi, D., Frei, C., Häberli, C., Liniger, M.A., Appenzeller, C.: The role of increasing temperature variability in European summer heatwaves. Nature 427(6972), 332–336 (2004). https://doi.org/10.1038/nature02300
Shabalova, M., van Deursen, W.P.A., Buishand, T.A.: Assessing future discharge of the river Rhine using regional climate model integrations and a hydrological model. Climate Res. 23(3), 233–246 (2003). https://doi.org/10.3354/CR023233
Shao, Z., Wang, L., Wang, Z., Deng, J.: Remote sensing image super-resolution using sparse representation and coupled sparse autoencoder. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12(8), 2663–2674 (2019). https://doi.org/10.1109/JSTARS.2019.2925456
Singh, A., Sahoo, R.K., Nair, A., Mohanty, U.C., Rai, R.K.: Assessing the performance of bias correction approaches for correcting monthly precipitation over India through coupled models. Meteorol. Appl. 24(3), 326–337 (2017). https://doi.org/10.1002/MET.1627
Singh, D., Ghosh, S., Roxy, M.K., McDermid, S.: Indian summer monsoon: Extreme events, historical changes, and role of anthropogenic forcings. Wiley Interdisc. Rev.: Clim. Chang. 10(2), e571 (2019). https://doi.org/10.1002/WCC.571
Singh, T., Saha, U., Prasad, V.S., Gupta, M.: Assessment of newly-developed high resolution reanalyses (IMDAA, NGFS and ERA5) against rainfall observations for indian region. Atmos. Res. 259, 105679 (2021). https://doi.org/10.1016/J.ATMOSRES.2021.105679
Termonia, P., van Schaeybroeck, B., de Cruz, L., de Troch, R., Caluwaerts, S., Giot, O., Hamdi, R., Vannitsem, S., Duchêne, F., Willems, P., Tabari, H., van Uytven, E., Hosseinzadehtalaei, P., van Lipzig, N., Wouters, H., vanden Broucke, S., van Ypersele, J.P., Marbaix, P., Villanueva-Birriel, C., …, Pottiaux, E.: The CORDEX.be initiative as a foundation for climate services in Belgium. Clim. Serv. 11, 49–61 (2018). https://doi.org/10.1016/J.CLISER.2018.05.001
Teutschbein, C., Seibert, J.: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 456–457, 12–29 (2012). https://doi.org/10.1016/J.JHYDROL.2012.05.052
Turco, M., Llasat, M.C., Herrera, S., Gutiérrez, J.M.: Bias correction and downscaling of future RCM precipitation projections using a MOS-Analog technique. J. Geophys. Res.: Atmos. 122(5), 2631–2648 (2017). https://doi.org/10.1002/2016JD025724
van Zyl, J.J.: The Shuttle Radar Topography Mission (SRTM): A breakthrough in remote sensing of topography. Acta Astronaut. 48(5–12), 559–565 (2001). https://doi.org/10.1016/S0094-5765(01)00020-0
Vandal, O., Kodra, E., Ganguly, S., Michaelis, A., Nemani, R., Ganguly, A.R.: DeepSD: generating high resolution climate change projections through single image super-resolution. KDD, 17 (2017). https://doi.org/10.1145/3097983.3098004
Zeng, K., Yu, J., Wang, R., Li, C., Tao, D.: Coupled deep autoencoder for single image super-resolution. IEEE Trans. Cybernet. 46(10), 27–37 (2015). https://doi.org/10.1109/TCYB.2015.2501373
Zhai, J., Zhang, S., Chen, J., He, Q.: Autoencoder and its various variants. 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 415–419 (2018). https://doi.org/10.1109/SMC.2018.00080