An Integrative Model of the Self-Sustained Oscillating Contractions of Cardiac Myocytes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bourdarias, C., S. Gerbi and J. Ohayon (2003). A three dimensional finite element method for biological active soft tissue-Formulation in cylindrical polar coordinates. Mathematical Modelling and Numerical Analysis 37(4): 725–739.
Caille, N., O. Thoumine, Y. Tardy and J.J. Meister (2002). Contribution of the nucleus to the mechanical properties of endothelial cells. Journal of Biomechanics 35: 177–187.
Cazorla, O., A. Lacampagne, J. Fauconnier and G. Vassort (2003). SR 33805 a Ca2+ antagonist with length-dependent Ca2+-sensitizing properties in cardiac myocytes. British Journal of Pharmacology 139: 99–108.
Dhooge, A., W. Govaerts and Yu, A. Kuznetsov (2003). MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Transactions in mathematical software 29: 141–164.
Fabiato, A. (1983). Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum, American Journal of Physiology 245: C1–C14.
Fabiato, A. and F. Fabiato (1975). Contraction induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cell. Journal of Physiology London 249: 469–495.
Goldbeter, A., G. Dupont and M.J. Berridge (1990). Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proceedings of the National Academy of Sciences, USA 87: 1461–1465.
Grouselle, M., B. Stuyvers, S. Bonoron-Adele, P. Besse and D. Georges-Cauld (1991). Digital imaging microscopy analysis of calcium release from sarcoplasmic reticulum in single rat cardiac myocytes. Pfluegers Archives 418: 109–119.
Holzapfel, G.A. (2001). Nonlinear Solid Mechanics. Ed. Wiley & Sons, NY.
Ishida, H., C. Genka, Y. Hirota, H. Nakazawa and W.H. Barry (1999). Formation of planar and spiral Ca2+ waves in isolated cardiac myocytes Biophysical Journal 77: 2114– 2122
Lakatta, E. (1992). Functional implications of spontaneous sarcoplasmic reticulum Ca2+ release in the heart. Cardiovascular Research 26: 193–214.
Ohayon, J. and P. Tracqui (2005). An extended method for computing the apparent stiffness of individual cell probed by magnetic twisting cytometry. Annals of Biomedical Engineering 33(2): 131–141.
Olivares, J., I. Dubus, A. Barrieux, J.L. Samuel, L. Rappaport and A. Rossi (1992). Pyrimidine nucleotide synthesis is preferentially supplied by exogenous cytidine in adult rat cultured cardiomyocytes. Journal of Molecular and Cellular Cardiology 24: 1349– 1359.
Slepchenko, B.M., J.C. Schaff, I. Macara and L.M. Loew (2003). Quantitative cell biology with the Virtual Cell. Trends in Cell Biology 13: 570–576.
Sneyd, J., S. Girard and D. Clapham (1993). Calcium wave propagation by calcium-induced calcium release: An unusuable excitable system. Bulletin of Mathematical Biology 55: 315– 344.
Stern, M.D., M.C. Capogrossi and E.G. Lakatta (1988). Spontaneous calcium release from the sarcoplasmic reticulum in myocardial cells: Mechanisms and consequences. Cell Calcium 9: 247–256.
Stuyvers, B.D, A.D. McCulloch, J. Guo, H.J. Duff and H.E.D.J. ter Keurs (2002). Effect of stimulation rate, sarcomere length and Ca2+ on force generation by mouse cardiac muscle. Journal of Physiology 544(3): 817–830.
Subramanian, S., S. Viatchenko-Karpinski, V. Lukyanenko, S. Györk and T.F. Wiesner (2001). Underlying mechanisms of symmetric calcium wave propagation in rat ventricular myocytes. Biophysical. Journal 80: 1–11.