Tích hợp biến đổi sóng tĩnh và mạng nơ-ron hồi quy phi tuyến với đầu vào ngoại sinh trong dự đoán dòng chảy vào hồ chứa theo cơ sở và tương lai

Springer Science and Business Media LLC - Tập 31 - Trang 4023-4043 - 2017
Siriporn Supratid1, Thannob Aribarg1,2, Seree Supharatid3
1College of Information Technology and Communication, Rangsit University, Pathumthani, Thailand
2Climate Change and Disaster Center, Rangsit University, Pathumthani, Thailand
3Provincial Waterworks Authority, Bangkok, Thailand

Tóm tắt

Để quản lý và lập kế hoạch tài nguyên nước hiệu quả, dự đoán chính xác dòng chảy vào hồ chứa là rất cần thiết không chỉ trong các giai đoạn đào tạo và thử nghiệm mà còn trong các khoảng thời gian tương lai cụ thể. Mục tiêu của nghiên cứu này là phát triển một mô hình dự đoán dòng chảy vào hồ chứa tích hợp, dựa vào mạng nơ-ron hồi quy phi tuyến với đầu vào ngoại sinh (NARX) và biến đổi sóng tĩnh (SWT), được gọi là SWT-NARX. Nhờ vào việc loại bỏ thao tác giảm mẫu, SWT cung cấp sự tăng cường có ảnh hưởng để trích xuất hiệu quả các đặc điểm tạm thời đáng kể ẩn chứa trong chuỗi thời gian dòng chảy vào không ổn định mà không mất thông tin. Các chuỗi thời gian con SWT đã được phân tách được xác định làm đầu vào-đầu ra cho dự đoán của NARX, trong khi một mô hình tổng hợp trung bình toàn cầu đa mô hình (MMEGM) của lượng mưa đã điều chỉnh dựa trên chín mô hình khí hậu toàn cầu (GCMs) hoạt động như một đầu vào ngoại sinh về biến đổi khí hậu. Hai hồ chứa lớn ở Thái Lan, hồ Bhumibol và hồ Sirikit, được tập trung nghiên cứu. Hệ số tương quan Pearson (r) và sai số trung bình bình phương (RMSE) được sử dụng để đánh giá hiệu suất. Kết quả đạt được chỉ ra rằng SWT-NARX vượt trội hơn rõ ràng so với các phương pháp dự đoán so sánh về một giai đoạn cơ sở lịch sử (1980–1999). Do đó, SWT-NARX được áp dụng để dự đoán dòng chảy vào hồ chứa trong các khoảng thời gian tương lai gần (2010–2039), trung bình (2040–2069) và xa (2070–2099) so với dòng chảy vào của giai đoạn cơ sở.

Từ khóa


Tài liệu tham khảo

Bai Y, Wang P, Li C, Xie J, Wang Y (2014) A multi-scale relevance vector regression approach for daily urban water demand forecasting. J Hydrol 517:236–245 Box GEP, Jenkins GM, Reinsel GC (1994) Time Series Analysis: Forecasting and Control, 3rd edn. Prentice hall, Englewood cliffs pp 197–199 Brands S, Herrera S, Ferna’ndez J, Gutie’rrez JM (2013) How well do CMIP5 earth system models simulate present climate conditions in Europe and Africa? Clim Dyn 41(3):803–817 Campos JNB, Souza Filho FA, Lima HVC (2014) Risks and uncertainties in reservoir yield in highly variable intermittent rivers: case of the Castanhão reservoir in semi-arid Brazil. Hydrol Sci J 59(6):1184–1195 Chang FJ, Chen PA, Lu YR, Huang E, Chang KY (2014) Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control. J Hydrol 517:836–846 Chen S, Billings SA, Grant PM (1990) Non-linear system identification using neural networks. Int J Control 51(6):1191–1214 Cook BI, Seager R (2013) The response of the North American monsoon to increased greenhouse gas forcing. J Geophys Res Atmos 118(4):1690–1699 Elman JL (1990) Finding structure time. Cogn Sci 14(2):179–221 El-Shafie A, Noureldin A, Taha M, Hussain A, Mukhlisin M (2012) Dynamic versus static neural network model for rainfall forecasting at Klang River basin, Malaysia. Hydrol Earth Syst Sci 16(4):1151–1169 Fowler JE (2005) The redundant discrete wavelet transform and additive noise. IEEE Signal Process Lett 12(9):629–632 Horne BG, Giles CL (1995) An experimental comparison of recurrent neural networks. MIT Press, In Advanc in Neural Info Process Syst, pp 697–704 Hsu P-C et al (2012) Increase of global monsoon area and precipitation under global warming: a robust signal? Geophys Res Lett 39(6):L06701 Hsu P-C, Li T, Murakami H, Kitoh A (2013) Future change of the global monsoon revealed from 19 CMIP5 models. J Geophys Res Atmos 118(3):1247–1260 Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice-Hall, Englewood Cliffs pp 665–685 Joetzjer E, Douville H, Delire C, Ciais P (2013) Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Clim Dyn 41(11):2921–2936 Jothiprakash V, Magar RB (2012) Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data. J Hydrol 450–451:293–307 Karl TR, Melillo JM, Peterson TC (eds) (2009) Global climate change impacts in the United States. Cambridge University Press, New York Knutti R, Abramowitz G, Collins M, Eyring V, Gleckler PJ, Hewitson BM, Mearns L (2010) Good practice guidance paper on Assessing and combining multi model climate projections. Meeting report of the intergovernmental panel on climate change expert meeting on Assessing and combining multi model climate projections. University of Bern, Bern, IPCC Working Group I Technical Support Unit Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge Krishna B (2014) Comparison of wavelet based ANN and regression models for reservoir inflow forecasting. J Hydrol Eng 19(7):1385–1400 Kucuk M, Oglu NA (2006) Wavelet regression technique for stream flow prediction. J Appl Stat 33(9):943–960 Kumar D, Kodra E, Ganguly AR (2014) Regional and seasonal intercomparison of CMIP3 and CMIP climate model ensembles for temperature and precipitation. Clim Dyn 43(9):2491–2518 Kumar S, Tiwari MK, Chatterjee C, Mishra A (2015) Reservoir inflow forecasting using ensemble models based on neural networks, wavelet analysis and bootstrap method. Water Resour Manag 29(13):4863–4883 Kummong R, Supratid S (2016) Thailand tourism forecasting based on a hybrid of discrete wavelet decomposition and NARX neural network. Ind Manag Data Syst 116(6):1242–1258 Latt ZZ (2015) Application of feedforward artificial neural network in Muskingum flood routing: a black-box forecasting approach for a Natural River system. Water Resour Manag 29(14):4995–5014 Leontaritis IJ, Billings SA (1985) Input-output parametric models for non-linear systems part I: deterministic non-linear systems. Int J Control 41(2):303–328 Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693 Mariotti A et al (2008) Mediterranean water cycle changes: transition to drier twenty-first century conditions in observations and CMIP3 simulations. Environ Res Lett 3(4):044001 Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88(9):1383–1394 Vu MT, Aribarg T, Supratid S, Raghavan SV, Liong S-Y (2016) Statistical downscaling rainfall using artificial neural network: significantly wetter Bangkok? Theor Appl Climatol 126(3):453–467 Mohanty S, Jha MK, Raul SK, Panda RK, Sudheer KP (2015) Using artificial neural network approach for simultaneous forecasting of weekly groundwater levels at multiple sites. Water Resour Manag 29(15):5521–5532 Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756 Nakicenovic N et al (2000) Special Report on Emissions Scenarios (SRES): A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press. http://www.grida.no/climate/ipcc/emission/index.htm. Accesses 2 Oct 2016 Narendra KS, Parthasarathy K (1990) Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw 1(1):4–27 Norgaard M, Ravn O, Poulsen NK, Hansen LK (2000) Neural networks for Modelling and control of dynamic systems. Springer, Berlin Okkan U (2012) Wavelet neural network model for reservoir inflow prediction. Sci Iran 19(6):1445–1455 Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Chang 2(4):248–253 Rumelhart DE, JL MC, Corporate PDP Research Group (1986) Parallel distributed processing: explorations in the microstructure of cognition, vol 1. MIT Press, Cambridge Sanderson BM, Knutti R (2012) On the interpretation of constrained climate model ensembles. Geophys Res Lett 39(16):1–6 (L16708) Santer BD, Taylor KE, Glecker PJ et al (2009) Incorporating model quality information in climate change detection and attribution studies. Proc Natl Acad Sci 106(35):14778–14783 Seager R et al (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316(5828):1181–1184 Sehgal V, Sahay RR, Chatterjee C (2014a) Effect of utilization of discrete wavelet components on flood forecasting performance of wavelet based ANFIS models. Water Resour Manag 28(6):1733–1749 Sehgal V, Tiwari MK, Chatterjee C (2014b) Wavelet bootstrap multiple linear regression based hybrid modeling for daily river discharge forecasting. Water Resour Manag 28(10):2793–2811 Shafaei M, Kisi O (2016) Lake level forecasting using wavelet-SVR, wavelet-ANFIS and wavelet-ARMA conjunction models. Water Resour Manag 30(1):79–97 Shenify M, Danesh AS, Gocić M, Taher RS, Wahab AWA, Gani A, Shamshirband S, Dalibor P (2016) Precipitation estimation using support vector machine with discrete wavelet transform. Water Resour Manag 30(2):641–652 Shensa MJ (1992) The discrete wavelet transform: wedding the a Trous and Mallat algorithms. IEEE Trans Signal Process 40(10):2464–2482 Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: the physical Science basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J (2013) Climate change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Supharatid S, Aribarg T, Supratid S (2016) Assessing potential flood vulnerability to climate change by CMIP3 and CMIP5 models: case study of the 2011 Thailand great flood. J Water Clim Change 7(1):52–67 Supharatid S (2016) Skill of precipitation projection in the Chao Phraya river basin by multi-model ensembleCMIP3-CMIP5. Weather Clim Extremes 12:1–14 Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experimental design. Bull Am Meteorol Soc 93(4):485–498 Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. Hydrol 456-457:12–29 Tipping ME (2000) The relevance vector machine. Adv Neural Inf Proces Syst 12:652–658 Tiwari MK, Song KY, Chatterjee C, Gupta MM (2013) Improving reliability of river flow forecasting using neural networks, wavelets and self-organizing maps. J Hydroinf 15(2):486–502 Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476(7):433–441 Valipour M (2016) Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorol Appl 23(1):91–100 Vapnik VN (1995) The nature of statistical learning theory. Springer, New York Wehner M (2013) Methods of projecting future changes in Extremes. Extremes in a Changing Clim 65:223–237 Wilks D (1990) Maximum likelihood estimation for the gamma distribution using data containing zeros. J Clim 3(12):1495–1501