Sử dụng Tích hợp Kỹ thuật GIS, Địa thống kê và Chồng bản đồ để Phân tích Biến động Không-thời gian của Chất lượng và Mực nước Ngầm tại Tỉnh Punjab, Pakistan, Nam Á

MDPI AG - Tập 12 Số 12 - Trang 3555
Huzaifa Shahzad1, Hafiz Umar Farid1, Zahid Mahmood Khan1, Muhammad Naveed Anjum2, Ijaz Ahmad3, Xi Chen4, Perviaz Sakindar5, Muhammad Mubeen6, Matlob Ahmad7, Aminjon Gulakhmadov8,4,9
1Department of Agricultural Engineering, Bahauddin Zakariya University, Multan, 60800, Pakistan
2Department of Land and Water Conservation Engineering, Faculty of Agricultural Engineering & Technology, PMAS Arid Agriculture University, Rawalpindi 46000, Pakistan
3Centre of Excellence in Water Resources Engineering, University of Engineering &Technology, Lahore 54890, Pakistan
4Research Center for Ecology and Environment of Central Asia, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
5Agricultural Engineering Department, (Field Wing) Rawalpindi 46000, Pakistan
6Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
7Department of Agricultural Engineering and Technology, Ghazi University, Dera Ghazi Khan 32200, Pakistan
8Institute of Water Problems, Hydropower and Ecology of the Academy of Sciences of the Republic of Tajikistan, Dushanbe, 734042, Tajikistan
9State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China

Tóm tắt

Quy trình biến đổi khí hậu nhanh chóng yêu cầu việc đánh giá định kỳ chất lượng nước ngầm theo quy mô thời gian và không gian tại bất kỳ khu vực nào để quản lý hiệu quả. Các phương pháp thống kê, hệ thống thông tin địa lý (GIS), địa thống kê và chồng bản đồ đã được áp dụng để điều tra sự biến động không-thời gian trong chất lượng nước ngầm và dữ liệu mực nước của 242 giếng quan trắc tại Punjab, Pakistan trong mùa trước và sau mùa mưa của các năm 2015 và 2016. Phân tích cho thấy sự biến động cao hơn trong dữ liệu cho cả hai mùa (trước mùa mưa và sau mùa mưa) khi hệ số biến động (CV) được phát hiện trong khoảng 84–175% đối với các thông số chất lượng nước ngầm. Dựa trên các giá trị kiểm định t, sự cải thiện biên trong độ dẫn điện của nước ngầm (EC), tỷ lệ hấp thụ natri (SAR) và natri cacbonat còn lại (RSC) và sự giảm mực nước ngầm (GWL) đã được quan sát thấy trong năm 2016 so với năm 2015 (p = 0.05). Phân tích phân bố không gian của EC, SAR và RSC nước ngầm cho thấy chất lượng nước ngầm không phù hợp để tưới tiêu tại khu vực phía đông nam thấp hơn của khu vực nghiên cứu. Mực nước ngầm (GWL) cũng cao hơn ở khu vực đó trong các mùa trước và sau mùa mưa năm 2015 và 2016. Phân tích chồng cũng cho thấy rằng các giá trị EC, RSC và GWL của nước ngầm cao hơn ở các phần phía đông nam của khu vực nghiên cứu trong các mùa trước và sau mùa mưa của năm 2015 và 2016. Do đó, cần thiết phải áp dụng các thực hành quản lý nước ngầm tại phần còn lại của khu vực (đặc biệt là ở khu vực phía đông nam thấp hơn) để vượt qua sự suy thoái trong tương lai của chất lượng nước ngầm.

Từ khóa


Tài liệu tham khảo

Vasanthavigar, 2010, Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India, Environ. Monit. Assess., 171, 595, 10.1007/s10661-009-1302-1

Tlili-Zrelli, B., Gueddari, M., and Bouhlila, R. (2018). Spatial and temporal variations of water quality of mateur aquifer (Northeastern Tunisia): Suitability for irrigation and drinking purposes. J. Chem.

Ebrahimi, K., Feiznia, B.S., Jannat Rostami, C.M., and Ausati, K. (2011). Assessing Temporal and Spatial Variations of Groundwater Quality (A Case Study: Kohpayeh-Segzi), IA University.

Tatawat, 2008, A hydrochemical profile for assessing the groundwater quality of Jaipur City, Environ. Monit. Assess., 143, 337, 10.1007/s10661-007-9936-3

Farid, H.U., Mahmood-Khan, Z., Ali, A., Mubeen, M., and Anjum, M.N. (2017). Site-specific aquifer characterization and identification of potential groundwater areas in Pakistan. Pol. J. Environ. Stud., 26.

Sharif, 2016, Managing water availability and requirements in Pakistan: Challenges and way forward, J. Agric. Res., 54, 117

Basharat, 2012, Spatial and temporal appraisal of groundwater depth and quality in LBDC command-issue, Pak. J. Eng. Appl. Sci., 11, 14

Zhou, 2013, Hydrogeochemical characteristics of central Jianghan Plain, China, Environ. Earth Sci., 68, 765, 10.1007/s12665-012-1778-9

Richards, 2017, High resolution profile of inorganic aqueous geochemistry and key redox zones in an arsenic bearing aquifer in Cambodia, Sci. Total Environ., 590–591, 540, 10.1016/j.scitotenv.2017.02.217

Yan, S.F., Yu, S.E., Wu, Y.B., Pan, D.F., She, D.L., and Ji, J. (2015). Seasonal Variations in Groundwater Level and Salinity in Coastal Plain of Eastern China Influenced by Climate. J. Chem., 2015.

Aladejana, J.A., Kalin, R.M., Sentenac, P., and Hassan, I. (2020). Assessing the impact of climate change on groundwater quality of the shallow coastal aquifer of eastern dahomey basin, southwestern Nigeria. Water, 12.

Sauer, T., Havlík, P., Schneider, U.A., Schmid, E., Kindermann, G., and Obersteiner, M. (2010). Agriculture and resource availability in a changing world: The role of irrigation. Water Resour. Res.

Khatri, 2015, Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas, Front. Life Sci., 8, 23, 10.1080/21553769.2014.933716

Nema, 2017, Spatial and temporal ground water responses to seasonal rainfall replenishment in an alluvial aquifer, Biosci. Biotechnol. Res. Commun., 10, 431, 10.21786/bbrc/10.3/16

Tlili Zrelli, B., and Gueddari, M. (2016). Groundwater hydro-geochemistry of Mateur alluvial aquifer (Northern Tunisia). J. Hydrogeol. Hydrol. Eng.

Belkhiri, 2011, Amultivariate statistical analysis of groundwater chemistry data, Int. J. Environ. Res., 5, 537

Kim, J.H., Kim, R.H., Lee, J., Cheong, T.J., Yum, B.W., and Chang, H.W. (2005). Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje, South Korea. Hydrol. Process.

Mohammadi, Z. (2009). Assessing hydrochemical evolution of groundwater in limestone terrain via principal component analysis. Environ. Earth Sci.

Srivastava, P.K., Han, D., Gupta, M., and Mukherjee, S. (2012). Integrated framework for monitoring groundwater pollution using a geographical information system and multivariate analysis. Hydrol. Sci. J.

Liu, J., Zhang, X., Xia, J., Wu, S., She, D., and Zou, L. (2016). Characterizing and explaining spatio-temporal variation of water quality in a highly disturbed river by multi-statistical techniques. Springerplus.

Zhou, 2012, Spatial variability of the shallow groundwater level and its chemistry characteristics in the low plain around the Bohai sea, north China, Environ. Monit. Assess., 184, 3697, 10.1007/s10661-011-2217-1

Zhang, Q., Singh, V.P., Peng, J., Chen, Y.D., and Li, J. (2012). Spatial-temporal changes of precipitation structure across the Pearl River basin, China. J. Hydrol.

Ağca, N. (2014). Spatial variability of groundwater quality and its suitability for drinking and irrigation in the Amik Plain (South Turkey). Environ. Earth Sci.

Omran, 2012, A proposed model to assess and map irrigation water well suitability using geospatial analysis, Water, 4, 545, 10.3390/w4030545

Srivastava, P.K., Gupta, M., and Mukherjee, S. (2012). Mapping spatial distribution of pollutants in groundwater of a tropical area of India using remote sensing and GIS. Appl. Geomat.

Pacheco Castro, R., Pacheco Ávila, J., Ye, M., and Cabrera Sansores, A. (2018). Groundwater quality: Analysis of Its temporal and spatial variability in a karst aquifer. Groundwater.

Farid, 2019, Assessing seasonal and long-term changes in groundwater quality due to over-abstraction using geostatistical techniques, Environ. Earth Sci., 78, 386, 10.1007/s12665-019-8373-2

Yeh, H.F., Lee, C.H., Hsu, K.C., and Chang, P.H. (2009). GIS for the assessment of the groundwater recharge potential zone. Environ. Geol.

Piccini, 2012, Francaviglia, R. Application of indicator kriging to evaluate the probability of exceeding nitrate contamination thresholds, Int. J. Environ. Res., 6, 853

Kumar, P., Herath, S., Avtar, R., and Takeuchi, K. (2016). Mapping of groundwater potential zones in Killinochi area, Sri Lanka, using GIS and remote sensing techniques. Sustain. Water Resour. Manag.

Iqbal, Z., Abbas, F., Ibrahim, M., Ayyaz, M.M., Ali, S., and Mahmood, A. (2019). Surveillance of heavy metals in maize grown with wastewater and their impacts on animal health in peri-urban areas of multan, Pakistan. Pak. J. Agric. Sci.

Abbas, F., Ahmad, A., Safeeq, M., Ali, S., Saleem, F., Hammad, H.M., and Farhad, W. (2014). Changes in precipitation extremes over arid to semiarid and subhumid Punjab, Pakistan. Theor. Appl. Climatol.

Shakoor, 2015, GIS based assessment and delineation of groundwater quality zones and its impact on agricultural productivity, Pak. J. Agric. Sci., 52, 837

Singh, K.K., Tewari, G., Kumar, S., and Mancini, P.M. (2020). Evaluation of groundwater quality for suitability of irrigation purposes: A case study in the Udham Singh Nagar, Uttarakhand. J. Chem.

Frank, M. (2020, November 29). Eaton Significance of Carbonates in Irrigation Waters: Soil Science. Available online: https://journals.lww.com/soilsci/Citation/1950/02000/Significance_of_Carbonates_in_Irrigation_Waters.4.aspx.

Popugaeva, 2020, Assessment of Khibiny Alkaline Massif groundwater quality using statistical methods and water quality index, Can. J. Chem. Eng., 98, 205, 10.1002/cjce.23601

Rossi, R.E., Dungan, J.L., and Beck, L.R. (1994). Kriging in the shadows: Geostatistical interpolation for remote sensing. Remote Sens. Environ.

Chabala, 2017, Application of ordinary kriging in mapping soil organic carbon in Zambia, Pedosphere, 27, 338, 10.1016/S1002-0160(17)60321-7

Gia Pham, T., Kappas, M., Van Huynh, C., and Hoang Khanh Nguyen, L. (2019). Application of ordinary kriging and regression kriging method for soil properties mapping in hilly region of central Vietnam. ISPRS Int. J. Geo-Inf., 8.

Mehrjardi, 2008, Spatial distribution of groundwater quality with geostatistics (Case study: Yazd-ardakan plain), Appl. Sci., 4, 9

Aly, 2017, Geostatistical methods in evaluating spatial variability of groundwater quality in Al-Kharj Region, Saudi Arabia, Appl. Water Sci., 7, 4013, 10.1007/s13201-017-0552-2

Zhang, H., Zhuang, S., Qian, H., Wang, F., and Ji, H. (2015). Spatial Variability of the Topsoil Organic Carbon in the Moso Bamboo Forests of Southern China in Association with Soil Properties. PLoS ONE, 10.

Sharma, P., Sood, S., and Duggirala, G. (2017). Seasonal Variation of Groundwater Quality in Rural Areas of Jaipur District, Rajasthan. Indian J. Sci. Technol.

Bui, D.D., Kawamura, A., Tong, T.N., Amaguchi, H., and Nakagawa, N. (2012). Spatio-temporal analysis of recent groundwater-level trends in the Red River Delta, Vietnam. Hydrogeol. J.

Rehman, F., Cheema, T., Lisa, M., Azeem, T., Ali, N.A., Khan, Z., Rehman, F., and Rehman, S.U. (2018). Statistical analysis tools for the assessment of groundwater chemical variations in wadi bani malik area, Saudi Arabia. Glob. Nest J.

Srinivasamoorthy, 2013, Hydrochemistry of groundwater in a coastal region of Cuddalore district, Tamilnadu, India: Implication for quality assessment, Arab. J. Geosci., 6, 441, 10.1007/s12517-011-0351-2

Ploum, S., Laudon, H., Peralta-Tapia, A., and Kuglerová, L. (2019). Are hydrological pathways and variability in groundwater chemistry linked in the riparian boreal forest?. Hydrol. Earth Syst. Sci. Discuss.

Mabrouk, M., Jonoski, A., Essink, G.H.P.O., and Uhlenbrook, S. (2019). Assessing the fresh-saline groundwater distribution in the Nile delta aquifer using a 3D variable-density groundwater flow model. Water, 11.

Chen, L., and Feng, Q. (2013). Geostatistical analysis of temporal and spatial variations in groundwater levels and quality in the Minqin oasis, Northwest China. Environ. Earth Sci.

Chen, J., Huang, Q., Lin, Y., Fang, Y., Qian, H., Liu, R., and Ma, H. (2019). Hydrogeochemical characteristics and quality assessment of groundwater in an irrigated region, Northwest China. Water, 11.

Xu, P., Feng, W., Qian, H., and Zhang, Q. (2019). Hydrogeochemical characterization and irrigation quality assessment of shallow groundwater in the central-Western Guanzhong basin, China. Int. J. Environ. Res. Public Health, 16.

Visser, 2006, The map comparison kit, Environ. Model. Softw., 21, 346, 10.1016/j.envsoft.2004.11.013

Pontius, 2004, Useful techniques of validation for spatially explicit land-change models, Ecol. Modell., 179, 445, 10.1016/j.ecolmodel.2004.05.010

Levine, 2009, A method for statistically comparing spatial distribution maps, Int. J. Health Geogr., 8, 7, 10.1186/1476-072X-8-7

Faisal, 2013, Third successive active monsoon over Pakistan—An analysis and diagnostic study of monsoon 2012, Pak. J. Meteorol., 9, 73

Li, H., Lu, Y., Zheng, C., Zhang, X., Zhou, B., and Wu, J. (2020). Seasonal and inter-annual variability of groundwater and their responses to climate change and human activities in arid and desert areas: A case study in Yaoba Oasis, Northwest China. Water, 12.

Tahmasebi, P., Mahmudy-Gharaie, M.H., Ghassemzadeh, F., and Karimi Karouyeh, A. (2018). Assessment of groundwater suitability for irrigation in a gold mine surrounding area, NE Iran. Environ. Earth Sci.

Yang, J., Cao, G., Han, D., Yuan, H., Hu, Y., Shi, P., and Chen, Y. (2019). Deformation of the aquifer system under groundwater level fluctuations and its implication for land subsidence control in the Tianjin coastal region. Environ. Monit. Assess.