An Indirect Finite Element Method for Variable-Coefficient Space-Fractional Diffusion Equations and Its Optimal-Order Error Estimates

Communications on Applied Mathematics and Computation - Tập 2 Số 1 - Trang 147-162 - 2020
Xiangcheng Zheng1, Vincent J. Ervin2, Hong Wang1
1Department of Mathematics, University of South Carolina, Columbia, USA
2Department of Mathematical Sciences, Clemson University, Clemson, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adams, R., Fournier, J.: Sobolev Spaces. Elsevier, San Diego (2003)

Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Volume 15 of Texts in Applied Mathematics, 2nd edn. Springer, New York (2002)

Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Co., Amsterdam (1978)

Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods. PDEs 22, 558–576 (2005)

Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-D fractional diffusion equations. Math. Comp. 87, 2273–2294 (2018)

Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

Guo, B.Y., Wang, L.L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128, 1–41 (2004)

Hao, Z., Zhang, Z.: Optimal regularity and error estimates of a spectral Galerkin method for fractional advection-diffusion–reaction equations. pp 1–21. https://www.researchgate.net/publication/329670660

Hao, Z., Park, M., Lin, G., Cai, Z.: Finite element method for two-sided fractional differential equations with variable coefficients: Galerkin approach. J. Sci. Comput. 79, 700–717 (2019)

Huang, J., Nie, N., Tang, Y.: A second order finite difference-spectral method for space fractional diffusion equations. Sci. China Math. 57, 1303–1317 (2014)

Jia, L., Chen, H., Ervin, V.J.: Existence and regularity of solutions to 1-D fractional order diffusion equations, submitted. arXiv:abs/1808.10555

Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84, 2665–2700 (2015)

Mao, Z., Karniadakis, G.E.: A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J. Numer. Anal. 56, 24–49 (2018)

Mao, Z., Shen, J.: Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients. J. Comput. Phys. 307, 243–261 (2016)

Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bulletin des Sciences Mathématiques 136, 521–573 (2012)

Podlubny, I.: Fractional Differential Equations. Volume 198 of Mathematics in Science and Engineering. Academic Press, San Diego (1999)

Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London (1993)

Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, New York (2011)

Wang, H., Yang, D.: Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51, 1088–1107 (2013)

Wang, H., Zhang, X.: A high-accuracy preserving spectral Galerkin method for the Dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations. J. Comput. Phys. 281, 67–81 (2015)

Wang, H., Yang, D., Zhu, S.: Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations. SIAM J. Numer. Anal. 52, 1292–1310 (2014)

Wang, H., Yang, D., Zhu, S.: A Petrov–Galerkin finite element method for variable-coefficient fractional diffusion equations. Comput. Methods Appl. Mech. Eng. 290, 45–56 (2015)

Wang, H., Yang, D., Zhu, S.: Accuracy of finite element methods for boundary-value problems of steady-state fractional diffusion equations. J Sci. Comput. 70, 429–449 (2017)

Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction–diffusion equation. SIAM J Numer. Anal. 52, 2599–2622 (2014)

Zhang, Z.: Error estimates of spectral Galerkin methods for a linear fractional reaction–diffusion equation. J Sci. Comput. 78, 1087–1110 (2019)

Zhang, Y., Benson, D.A., Meerschaert, M.M., LaBolle, E.M.: Space-fractional advection-dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the MADE-site data. Water Resour. Res. 43, W05439 (2007)