An Indirect Finite Element Method for Variable-Coefficient Space-Fractional Diffusion Equations and Its Optimal-Order Error Estimates
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adams, R., Fournier, J.: Sobolev Spaces. Elsevier, San Diego (2003)
Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Volume 15 of Texts in Applied Mathematics, 2nd edn. Springer, New York (2002)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Co., Amsterdam (1978)
Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods. PDEs 22, 558–576 (2005)
Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-D fractional diffusion equations. Math. Comp. 87, 2273–2294 (2018)
Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)
Guo, B.Y., Wang, L.L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128, 1–41 (2004)
Hao, Z., Zhang, Z.: Optimal regularity and error estimates of a spectral Galerkin method for fractional advection-diffusion–reaction equations. pp 1–21. https://www.researchgate.net/publication/329670660
Hao, Z., Park, M., Lin, G., Cai, Z.: Finite element method for two-sided fractional differential equations with variable coefficients: Galerkin approach. J. Sci. Comput. 79, 700–717 (2019)
Huang, J., Nie, N., Tang, Y.: A second order finite difference-spectral method for space fractional diffusion equations. Sci. China Math. 57, 1303–1317 (2014)
Jia, L., Chen, H., Ervin, V.J.: Existence and regularity of solutions to 1-D fractional order diffusion equations, submitted. arXiv:abs/1808.10555
Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84, 2665–2700 (2015)
Mao, Z., Karniadakis, G.E.: A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J. Numer. Anal. 56, 24–49 (2018)
Mao, Z., Shen, J.: Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients. J. Comput. Phys. 307, 243–261 (2016)
Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)
Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bulletin des Sciences Mathématiques 136, 521–573 (2012)
Podlubny, I.: Fractional Differential Equations. Volume 198 of Mathematics in Science and Engineering. Academic Press, San Diego (1999)
Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London (1993)
Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, New York (2011)
Wang, H., Yang, D.: Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51, 1088–1107 (2013)
Wang, H., Zhang, X.: A high-accuracy preserving spectral Galerkin method for the Dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations. J. Comput. Phys. 281, 67–81 (2015)
Wang, H., Yang, D., Zhu, S.: Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations. SIAM J. Numer. Anal. 52, 1292–1310 (2014)
Wang, H., Yang, D., Zhu, S.: A Petrov–Galerkin finite element method for variable-coefficient fractional diffusion equations. Comput. Methods Appl. Mech. Eng. 290, 45–56 (2015)
Wang, H., Yang, D., Zhu, S.: Accuracy of finite element methods for boundary-value problems of steady-state fractional diffusion equations. J Sci. Comput. 70, 429–449 (2017)
Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction–diffusion equation. SIAM J Numer. Anal. 52, 2599–2622 (2014)
Zhang, Z.: Error estimates of spectral Galerkin methods for a linear fractional reaction–diffusion equation. J Sci. Comput. 78, 1087–1110 (2019)
Zhang, Y., Benson, D.A., Meerschaert, M.M., LaBolle, E.M.: Space-fractional advection-dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the MADE-site data. Water Resour. Res. 43, W05439 (2007)