Một Phương Pháp Cải Tiến Trong Việc Chế Tạo Composit Magnesium AZ91 Tăng Cường Bằng Ống Nano Carbon Với Độ Bền Và Độ Dẻo Tăng Cường

Metals - Tập 12 Số 5 - Trang 834
Samaneh Nasiri1, Guang Yang2, Erdmann Spiecker3, Qianqian Li4
1Department of Materials Science, Friedrich-Alexander-University Erlangen-Nuremberg, 90762 Fuerth, Germany
2Thermo Fisher Scientific Inc., 2517 Jinke Road, Shanghai 201210, China
3Institute of Micro- and Nanostructure Research, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
4Department of Aeronautics, Imperial College, London SW7 2AZ, UK

Tóm tắt

Các ống nano carbon nhiều lớp (MWCNTs) được trang trí bằng các hạt nano Pt thông qua phương pháp "theo từng lớp" bằng việc sử dụng poly (natri 4-styrene sulfonat) (PSS) và poly (diallyl dimethylammonium chloride) (PDDA). Hình ảnh kính hiển vi điện tử truyền qua (TEM) và phân tích X-quang năng lượng tán xạ (EDX) của các mẫu xác nhận sự lắng đọng của Pt trên bề mặt của CNTs. Độ phân tán và tính ổn định trong phân tán của MWCNTs trong các dung môi được cải thiện khi MWCNTs được phủ bằng các hạt nano Pt. Các composite Mg AZ91 được gia cố bằng MWCNTs sau đó được tạo ra thông qua quy trình khuấy nóng chảy. Các thử nghiệm nén của các composite cho thấy việc thêm 0.05% wt MWCNTs phủ Pt vào AZ91 cải thiện các thuộc tính cơ học của composite so với AZ91 nguyên chất và MWCNT/AZ91 chưa xử lý. Phân tích bề mặt gãy của composite bằng kính hiển vi điện tử quét (SEM) cho thấy sự kéo riêng lẻ của MWCNTs trong trường hợp các composite MWCNT/AZ91 phủ Pt. Phát hiện này có thể được lý giải bởi việc phân tán đồng nhất của MWCNTs phủ Pt trong Mg nhờ vào tính ướt cải thiện của MWCNTs phủ Pt trong các lớp nóng chảy của Mg. Nghiên cứu về hành vi kéo ra của CNTs nguyên bản và CNTs phủ Pt từ ma trận Mg bằng việc sử dụng mô phỏng động lực học phân tử hỗ trợ cho sự giải thích này.

Từ khóa


Tài liệu tham khảo

Sammalkorpi, 2004, Mechanical properties of carbon nanotubes with vacancies and related defects, Phys. Rev. B, 70, 245416, 10.1103/PhysRevB.70.245416

Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385, 10.1126/science.1157996

Nasiri, 2016, Rupture of graphene sheets with randomly distributed defects, AIMS Mater. Sci., 3, 1340, 10.3934/matersci.2016.4.1340

Khare, 2007, Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets, Phys. Rev. B, 75, 075412, 10.1103/PhysRevB.75.075412

Zhang, 2013, Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors, Sci. Rep., 3, 1408, 10.1038/srep01408

Stoller, 2008, Graphene-based ultracapacitors, Nano Lett., 8, 3498, 10.1021/nl802558y

Zhang, 2020, Measuring the specific surface area of monolayer graphene oxide in water, Mater. Lett., 261, 127098, 10.1016/j.matlet.2019.127098

Deng, 2014, Coefficient of thermal expansion of carbon nanotubes measured by Raman spectroscopy, Appl. Phys. Lett., 104, 051907, 10.1063/1.4864056

Pop, 2012, Thermal properties of graphene: Fundamentals and applications, MRS Bull., 37, 1273, 10.1557/mrs.2012.203

Balandin, 2011, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569, 10.1038/nmat3064

Esawi, 2008, Carbon nanotube-reinforced aluminium strips, Compos. Sci. Technol., 68, 486, 10.1016/j.compscitech.2007.06.030

Bakshi, 2011, An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites, Carbon, 49, 533, 10.1016/j.carbon.2010.09.054

Abazari, S., Shamsipur, A., Bakhsheshi-Rad, H.R., Ismail, A.F., Sharif, S., Razzaghi, M., Ramakrishna, S., and Berto, F. (2020). Carbon Nanotubes (CNTs)-Reinforced Magnesium-Based Matrix Composites: A Comprehensive Review. Materials, 13.

Ding, 2020, Investigation into the influence of carbon nanotubes addition on residual stresses and mechanical properties in the CNTs@SiCp/Mg-6Zn hybrid composite using neutron diffraction method, Mater. Sci. Eng. A, 797, 140105, 10.1016/j.msea.2020.140105

Nam, 2012, Effect of CNTs on precipitation hardening behavior of CNT/Al–Cu composites, Carbon, 50, 4809, 10.1016/j.carbon.2012.06.005

Chen, 2017, Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites, Acta Mater., 140, 317, 10.1016/j.actamat.2017.08.048

Li, 2009, Reversible twinning in pure aluminum, Phys. Rev. Lett., 102, 205504, 10.1103/PhysRevLett.102.205504

Chen, 2015, Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests, Compos. Sci. Technol., 113, 1, 10.1016/j.compscitech.2015.03.009

Chen, 2019, Interfacial in-situ Al2O3 nanoparticles enhance load transfer in carbon nanotube (CNT)-reinforced aluminum matrix composites, J. Alloy. Compd., 789, 25, 10.1016/j.jallcom.2019.03.063

Kim, 2013, Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites, Nat. Commun., 4, 2114, 10.1038/ncomms3114

Nasiri, 2022, Effects of elasticity and dislocation core structure on the interaction of dislocations with embedded CNTs in aluminium: An atomistic simulation study, Materialia, 21, 101347, 10.1016/j.mtla.2022.101347

Cheng, 2014, Porous graphene supported Pt catalysts for proton exchange membrane fuel cells, Electrochim. Acta, 132, 356, 10.1016/j.electacta.2014.03.181

Choi, 2012, Graphene for energy conversion and storage in fuel cells and supercapacitors, Nano Energy, 1, 534, 10.1016/j.nanoen.2012.05.001

George, 2005, Strengthening in carbon nanotube/aluminium (CNT/Al) composites, Scr. Mater., 53, 1159, 10.1016/j.scriptamat.2005.07.022

Li, 2009, Improved processing of carbon nanotube/magnesium alloy composites, Compos. Sci. Technol., 69, 1193, 10.1016/j.compscitech.2009.02.020

Choi, 2016, Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading, Compos. Part B Eng., 91, 119, 10.1016/j.compositesb.2015.12.031

Park, 2018, Analysis of geometrical characteristics of CNT-Al composite using molecular dynamics and the modified rule of mixture (MROM), J. Mech. Sci. Technol., 32, 5845, 10.1007/s12206-018-1133-5

Xiang, 2017, An atomic-level understanding of the strengthening mechanism of aluminum matrix composites reinforced by aligned carbon nanotubes, Comput. Mater. Sci., 128, 359, 10.1016/j.commatsci.2016.11.032

Nasiri, 2022, Atomistic aspects of load transfer and fracture in CNT-reinforced aluminium, Materialia, 22, 101376, 10.1016/j.mtla.2022.101376

Zhang, 2011, Wetting of B4C, TiC and graphite substrates by molten Mg, Mater. Chem. Phys., 130, 665, 10.1016/j.matchemphys.2011.07.040

Goh, 2005, Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique, Nanotechnology, 17, 7, 10.1088/0957-4484/17/1/002

Goh, 2006, Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes, Mater. Sci. Eng. A, 423, 153, 10.1016/j.msea.2005.10.071

Zhou, 2007, Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique, Compos. Part A Appl. Sci. Manuf., 38, 301, 10.1016/j.compositesa.2006.04.004

Deng, 2007, Processing and properties of carbon nanotubes reinforced aluminum composites, Mater. Sci. Eng. A, 444, 138, 10.1016/j.msea.2006.08.057

Li, 2010, CNT reinforced light metal composites produced by melt stirring and by high pressure die casting, Compos. Sci. Technol., 70, 2242, 10.1016/j.compscitech.2010.05.024

Ip, 1998, Wettability of nickel coated graphite by aluminum, Mater. Sci. Eng. A, 244, 31, 10.1016/S0921-5093(97)00823-X

Chu, 2000, Experimental analysis of the tribological behavior of electroless nickel-coated graphite particles in aluminum matrix composites under reciprocating motion, Wear, 239, 126, 10.1016/S0043-1648(00)00316-1

Guo, 2002, Tribological behavior of aluminum/SiC/nickel-coated graphite hybrid composites, Mater. Sci. Eng. A, 333, 134, 10.1016/S0921-5093(01)01817-2

Song, 2010, Influence of nickel coating on the interfacial bonding characteristics of carbon nanotube–aluminum composites, Comput. Mater. Sci., 49, 899, 10.1016/j.commatsci.2010.06.044

Duan, 2017, Enhanced interfacial strength of carbon nanotube/copper nanocomposites via Ni-coating: Molecular-dynamics insights, Phys. E Low-Dimens. Syst. Nanostruct., 88, 259, 10.1016/j.physe.2017.01.015

Nasiri, 2019, Nickel coated carbon nanotubes in aluminum matrix composites: A multiscale simulation study, Eur. Phys. J. B, 92, 186, 10.1140/epjb/e2019-100243-6

Kong, 2002, Continuous Ni-layer on multiwall carbon nanotubes by an electroless plating method, Surf. Coat. Technol., 155, 33, 10.1016/S0257-8972(02)00032-4

Jafri, 2009, Au–MnO2/MWNT and Au–ZnO/MWNT as oxygen reduction reaction electrocatalyst for polymer electrolyte membrane fuel cell, Int. J. Hydrogen Energy, 34, 6371, 10.1016/j.ijhydene.2009.05.084

Yang, 2006, Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors, Biosens. Bioelectron., 21, 1125, 10.1016/j.bios.2005.04.009

Day, 2005, Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks, J. Am. Chem. Soc., 127, 10639, 10.1021/ja051320r

Qu, 2005, Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes, J. Am. Chem. Soc., 127, 10806, 10.1021/ja053479+

Du, 2009, A general approach for uniform coating of a metal layer on MWCNTs via layer-by-layer assembly, J. Phys. Chem. C, 113, 17387, 10.1021/jp906349c

Si, 2008, Exfoliated graphene separated by platinum nanoparticles, Chem. Mater., 20, 6792, 10.1021/cm801356a

Nasiri, 2020, Multilayer Structures of Graphene and Pt Nanoparticles: A Multiscale Computational Study, Adv. Eng. Mater., 22, 2000207, 10.1002/adem.202000207

Khomyakov, 2009, First-principles study of the interaction and charge transfer between graphene and metals, Phys. Rev. B, 79, 195425, 10.1103/PhysRevB.79.195425

Schneider, 2013, Interaction of platinum nanoparticles with graphitic carbon structures: A computational study, ChemPhysChem, 14, 2984, 10.1002/cphc.201300375

Balbuena, 2013, Interactions of platinum clusters with a graphite substrate, Phys. Chem. Chem. Phys., 15, 11950, 10.1039/c3cp51791h

Gan, 2008, One-and Two-Dimensional Diffusion of Metal Atoms in Graphene, Small, 4, 587, 10.1002/smll.200700929

Hippmann, 2013, Carbon nanotubes–reinforced copper matrix composites produced by melt stirring, Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst., 227, 63

Chambers, J.M., and Hastie, T.J. (1992). Statistical Models in S, Wadsworth and Brooks/Cole. Book reviews; Statistical Methods in Medical Research.

Yandell, B.S. (1997). Practical Data Analysis for Designed Experiments, Taylor & Francis.

Stuart, 2000, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys., 112, 6472, 10.1063/1.481208

Zhou, 2004, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B, 69, 144113, 10.1103/PhysRevB.69.144113

Zhou, 2016, Molecular dynamics simulation for mechanical properties of magnesium matrix composites reinforced with nickel-coated single-walled carbon nanotubes, J. Compos. Mater., 50, 191, 10.1177/0021998315572710

Evans, 1985, The Nose–Hoover thermostat, J. Chem. Phys., 83, 4069, 10.1063/1.449071

Vanin, 2010, Graphene on metals: A van der Waals density functional study, Phys. Rev. B, 81, 081408, 10.1103/PhysRevB.81.081408

Gong, 2010, First-principles study of metal–graphene interfaces, J. Appl. Phys., 108, 123711, 10.1063/1.3524232

Fampiou, 2012, Binding of Pt nanoclusters to point defects in graphene: Adsorption, morphology, and electronic structure, J. Phys. Chem. C, 116, 6543, 10.1021/jp2110117