Một Phương Pháp Cải Tiến Trong Việc Chế Tạo Composit Magnesium AZ91 Tăng Cường Bằng Ống Nano Carbon Với Độ Bền Và Độ Dẻo Tăng Cường
Tóm tắt
Các ống nano carbon nhiều lớp (MWCNTs) được trang trí bằng các hạt nano Pt thông qua phương pháp "theo từng lớp" bằng việc sử dụng poly (natri 4-styrene sulfonat) (PSS) và poly (diallyl dimethylammonium chloride) (PDDA). Hình ảnh kính hiển vi điện tử truyền qua (TEM) và phân tích X-quang năng lượng tán xạ (EDX) của các mẫu xác nhận sự lắng đọng của Pt trên bề mặt của CNTs. Độ phân tán và tính ổn định trong phân tán của MWCNTs trong các dung môi được cải thiện khi MWCNTs được phủ bằng các hạt nano Pt. Các composite Mg AZ91 được gia cố bằng MWCNTs sau đó được tạo ra thông qua quy trình khuấy nóng chảy. Các thử nghiệm nén của các composite cho thấy việc thêm 0.05% wt MWCNTs phủ Pt vào AZ91 cải thiện các thuộc tính cơ học của composite so với AZ91 nguyên chất và MWCNT/AZ91 chưa xử lý. Phân tích bề mặt gãy của composite bằng kính hiển vi điện tử quét (SEM) cho thấy sự kéo riêng lẻ của MWCNTs trong trường hợp các composite MWCNT/AZ91 phủ Pt. Phát hiện này có thể được lý giải bởi việc phân tán đồng nhất của MWCNTs phủ Pt trong Mg nhờ vào tính ướt cải thiện của MWCNTs phủ Pt trong các lớp nóng chảy của Mg. Nghiên cứu về hành vi kéo ra của CNTs nguyên bản và CNTs phủ Pt từ ma trận Mg bằng việc sử dụng mô phỏng động lực học phân tử hỗ trợ cho sự giải thích này.
Từ khóa
Tài liệu tham khảo
Sammalkorpi, 2004, Mechanical properties of carbon nanotubes with vacancies and related defects, Phys. Rev. B, 70, 245416, 10.1103/PhysRevB.70.245416
Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385, 10.1126/science.1157996
Nasiri, 2016, Rupture of graphene sheets with randomly distributed defects, AIMS Mater. Sci., 3, 1340, 10.3934/matersci.2016.4.1340
Khare, 2007, Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets, Phys. Rev. B, 75, 075412, 10.1103/PhysRevB.75.075412
Zhang, 2013, Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors, Sci. Rep., 3, 1408, 10.1038/srep01408
Zhang, 2020, Measuring the specific surface area of monolayer graphene oxide in water, Mater. Lett., 261, 127098, 10.1016/j.matlet.2019.127098
Deng, 2014, Coefficient of thermal expansion of carbon nanotubes measured by Raman spectroscopy, Appl. Phys. Lett., 104, 051907, 10.1063/1.4864056
Pop, 2012, Thermal properties of graphene: Fundamentals and applications, MRS Bull., 37, 1273, 10.1557/mrs.2012.203
Balandin, 2011, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569, 10.1038/nmat3064
Esawi, 2008, Carbon nanotube-reinforced aluminium strips, Compos. Sci. Technol., 68, 486, 10.1016/j.compscitech.2007.06.030
Bakshi, 2011, An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites, Carbon, 49, 533, 10.1016/j.carbon.2010.09.054
Abazari, S., Shamsipur, A., Bakhsheshi-Rad, H.R., Ismail, A.F., Sharif, S., Razzaghi, M., Ramakrishna, S., and Berto, F. (2020). Carbon Nanotubes (CNTs)-Reinforced Magnesium-Based Matrix Composites: A Comprehensive Review. Materials, 13.
Ding, 2020, Investigation into the influence of carbon nanotubes addition on residual stresses and mechanical properties in the CNTs@SiCp/Mg-6Zn hybrid composite using neutron diffraction method, Mater. Sci. Eng. A, 797, 140105, 10.1016/j.msea.2020.140105
Nam, 2012, Effect of CNTs on precipitation hardening behavior of CNT/Al–Cu composites, Carbon, 50, 4809, 10.1016/j.carbon.2012.06.005
Chen, 2017, Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites, Acta Mater., 140, 317, 10.1016/j.actamat.2017.08.048
Li, 2009, Reversible twinning in pure aluminum, Phys. Rev. Lett., 102, 205504, 10.1103/PhysRevLett.102.205504
Chen, 2015, Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests, Compos. Sci. Technol., 113, 1, 10.1016/j.compscitech.2015.03.009
Chen, 2019, Interfacial in-situ Al2O3 nanoparticles enhance load transfer in carbon nanotube (CNT)-reinforced aluminum matrix composites, J. Alloy. Compd., 789, 25, 10.1016/j.jallcom.2019.03.063
Kim, 2013, Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites, Nat. Commun., 4, 2114, 10.1038/ncomms3114
Nasiri, 2022, Effects of elasticity and dislocation core structure on the interaction of dislocations with embedded CNTs in aluminium: An atomistic simulation study, Materialia, 21, 101347, 10.1016/j.mtla.2022.101347
Cheng, 2014, Porous graphene supported Pt catalysts for proton exchange membrane fuel cells, Electrochim. Acta, 132, 356, 10.1016/j.electacta.2014.03.181
Choi, 2012, Graphene for energy conversion and storage in fuel cells and supercapacitors, Nano Energy, 1, 534, 10.1016/j.nanoen.2012.05.001
George, 2005, Strengthening in carbon nanotube/aluminium (CNT/Al) composites, Scr. Mater., 53, 1159, 10.1016/j.scriptamat.2005.07.022
Li, 2009, Improved processing of carbon nanotube/magnesium alloy composites, Compos. Sci. Technol., 69, 1193, 10.1016/j.compscitech.2009.02.020
Choi, 2016, Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading, Compos. Part B Eng., 91, 119, 10.1016/j.compositesb.2015.12.031
Park, 2018, Analysis of geometrical characteristics of CNT-Al composite using molecular dynamics and the modified rule of mixture (MROM), J. Mech. Sci. Technol., 32, 5845, 10.1007/s12206-018-1133-5
Xiang, 2017, An atomic-level understanding of the strengthening mechanism of aluminum matrix composites reinforced by aligned carbon nanotubes, Comput. Mater. Sci., 128, 359, 10.1016/j.commatsci.2016.11.032
Nasiri, 2022, Atomistic aspects of load transfer and fracture in CNT-reinforced aluminium, Materialia, 22, 101376, 10.1016/j.mtla.2022.101376
Zhang, 2011, Wetting of B4C, TiC and graphite substrates by molten Mg, Mater. Chem. Phys., 130, 665, 10.1016/j.matchemphys.2011.07.040
Goh, 2005, Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique, Nanotechnology, 17, 7, 10.1088/0957-4484/17/1/002
Goh, 2006, Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes, Mater. Sci. Eng. A, 423, 153, 10.1016/j.msea.2005.10.071
Zhou, 2007, Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique, Compos. Part A Appl. Sci. Manuf., 38, 301, 10.1016/j.compositesa.2006.04.004
Deng, 2007, Processing and properties of carbon nanotubes reinforced aluminum composites, Mater. Sci. Eng. A, 444, 138, 10.1016/j.msea.2006.08.057
Li, 2010, CNT reinforced light metal composites produced by melt stirring and by high pressure die casting, Compos. Sci. Technol., 70, 2242, 10.1016/j.compscitech.2010.05.024
Ip, 1998, Wettability of nickel coated graphite by aluminum, Mater. Sci. Eng. A, 244, 31, 10.1016/S0921-5093(97)00823-X
Chu, 2000, Experimental analysis of the tribological behavior of electroless nickel-coated graphite particles in aluminum matrix composites under reciprocating motion, Wear, 239, 126, 10.1016/S0043-1648(00)00316-1
Guo, 2002, Tribological behavior of aluminum/SiC/nickel-coated graphite hybrid composites, Mater. Sci. Eng. A, 333, 134, 10.1016/S0921-5093(01)01817-2
Song, 2010, Influence of nickel coating on the interfacial bonding characteristics of carbon nanotube–aluminum composites, Comput. Mater. Sci., 49, 899, 10.1016/j.commatsci.2010.06.044
Duan, 2017, Enhanced interfacial strength of carbon nanotube/copper nanocomposites via Ni-coating: Molecular-dynamics insights, Phys. E Low-Dimens. Syst. Nanostruct., 88, 259, 10.1016/j.physe.2017.01.015
Nasiri, 2019, Nickel coated carbon nanotubes in aluminum matrix composites: A multiscale simulation study, Eur. Phys. J. B, 92, 186, 10.1140/epjb/e2019-100243-6
Kong, 2002, Continuous Ni-layer on multiwall carbon nanotubes by an electroless plating method, Surf. Coat. Technol., 155, 33, 10.1016/S0257-8972(02)00032-4
Jafri, 2009, Au–MnO2/MWNT and Au–ZnO/MWNT as oxygen reduction reaction electrocatalyst for polymer electrolyte membrane fuel cell, Int. J. Hydrogen Energy, 34, 6371, 10.1016/j.ijhydene.2009.05.084
Yang, 2006, Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors, Biosens. Bioelectron., 21, 1125, 10.1016/j.bios.2005.04.009
Day, 2005, Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks, J. Am. Chem. Soc., 127, 10639, 10.1021/ja051320r
Qu, 2005, Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes, J. Am. Chem. Soc., 127, 10806, 10.1021/ja053479+
Du, 2009, A general approach for uniform coating of a metal layer on MWCNTs via layer-by-layer assembly, J. Phys. Chem. C, 113, 17387, 10.1021/jp906349c
Si, 2008, Exfoliated graphene separated by platinum nanoparticles, Chem. Mater., 20, 6792, 10.1021/cm801356a
Nasiri, 2020, Multilayer Structures of Graphene and Pt Nanoparticles: A Multiscale Computational Study, Adv. Eng. Mater., 22, 2000207, 10.1002/adem.202000207
Khomyakov, 2009, First-principles study of the interaction and charge transfer between graphene and metals, Phys. Rev. B, 79, 195425, 10.1103/PhysRevB.79.195425
Schneider, 2013, Interaction of platinum nanoparticles with graphitic carbon structures: A computational study, ChemPhysChem, 14, 2984, 10.1002/cphc.201300375
Balbuena, 2013, Interactions of platinum clusters with a graphite substrate, Phys. Chem. Chem. Phys., 15, 11950, 10.1039/c3cp51791h
Gan, 2008, One-and Two-Dimensional Diffusion of Metal Atoms in Graphene, Small, 4, 587, 10.1002/smll.200700929
Hippmann, 2013, Carbon nanotubes–reinforced copper matrix composites produced by melt stirring, Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst., 227, 63
Chambers, J.M., and Hastie, T.J. (1992). Statistical Models in S, Wadsworth and Brooks/Cole. Book reviews; Statistical Methods in Medical Research.
Stuart, 2000, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys., 112, 6472, 10.1063/1.481208
Zhou, 2004, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B, 69, 144113, 10.1103/PhysRevB.69.144113
Zhou, 2016, Molecular dynamics simulation for mechanical properties of magnesium matrix composites reinforced with nickel-coated single-walled carbon nanotubes, J. Compos. Mater., 50, 191, 10.1177/0021998315572710
Vanin, 2010, Graphene on metals: A van der Waals density functional study, Phys. Rev. B, 81, 081408, 10.1103/PhysRevB.81.081408
Gong, 2010, First-principles study of metal–graphene interfaces, J. Appl. Phys., 108, 123711, 10.1063/1.3524232