An Extension of a Class of Iterative Procedures for Nonlinear Quasivariational Inequalities

Ram U. Verma1
1International Publications, USA, Mathematical Sciences Division, Orlando

Tóm tắt

Consider the convergence of the projection methods based on an extension of a special class of algorithms for the approximation--solvability of the following class of nonlinear quasivariational inequality (NQVI) problems: find an element $$x* \in H$$ such that $$g\left( {x*} \right) \in K$$ and $$\left\langle {T\left( {x*} \right),g\left( x \right) - g\left( {x{\kern 1pt} *} \right)} \right\rangle \geqslant 0{\text{foral}}{\kern 1pt} \operatorname{l} g\left( x \right) \in K,$$ where $$T,g:H \to H$$ are mappings on H and K is a nonempty closed convex subset of a real Hilbert space H. The iterative procedure is characterized as a nonlinear quasivariational inequality: for any arbitrarily chosen initial point x 0 ∈ K and, for constants $$\rho >0$$ and $$\beta >0$$ , we have $$\left\langle {\rho T\left( {y^k } \right) + g\left( {x^{k + 1} } \right) - g\left( {y^k } \right),g\left( x \right) - g\left( {x^{k + 1} } \right)} \right\rangle \geqslant 0$$ $${\text{foral}}\operatorname{l} g\left( x \right) \in K{\text{andfor}}k \geqslant 0,$$ where $$\left\langle {\beta T\left( {x^k } \right) + g\left( {y^k } \right) - g\left( {x^k } \right),g\left( x \right) - g\left( {y^k } \right)} \right\rangle \geqslant 0{\text{foral}}{\kern 1pt} \operatorname{l} g\left( x \right) \in K.$$ This nonlinear quasivariational inequality type algorithm has an equivalent projection formula $$g\left( {x^{k + 1} } \right) = P_K \left[ {g\left( {y^k } \right) - \rho T\left( {y^k } \right)} \right],$$ where $$g\left( {y^k } \right) = P_K \left[ {g\left( {x^k } \right) - \beta T\left( {x^k } \right)} \right],$$ for the projection P K of H onto K.

Tài liệu tham khảo

C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities, Wiley & Sons, New York, 1984. D. Chan and J. S. Pang, Iterative methods for variational and complementarity problems, Math. Program. 24, 284-313 (1982). X. P. Ding, A new class of generalized strongly nonlinear quasivariational inequalities and quasicomplementarity problems, Indian J. Pure Appl. Math. 25(11), 1115-1128 (1994). J. C. Dunn, Convexity, monotonicity and gradient processes in Hilbert spaces, J. Math. Anal. Appl. 53, 145-158 (1976). J. S. Guo and J. C. Yao, Extension of strongly nonlinear quasivariational inequalities, Appl. Math. Lett. 5(3), 35-38 (1992). B. S. He, A projection and contraction method for a class of linear complementarity problems and its applications, Appl. Math. Optim. 25, 247-262 (1992). B. S. He, A new method for a class of linear variational inequalities, Math. Program. 66, 137-144 (1994). B. S. He, Solving a class of linear projection equations, Numer. Math. 68, 71-80 (1994). B. S. He, A class of projection and contraction methods for monotone variational inequalities, Appl. Math. Optim. 35, 69-76 (1997). D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities, Academic Press, New York, 1980. G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon 12, 747-756 (1976). P. Marcotte and J. H. Wu, On the convergence of projection methods, J. Optim. Theory Appl. 85, 347-362 (1995). M. A. Noor, An implicit method for mixed variational inequalities, Appl. Math. Lett. 11(4), 109-113 (1998). M. A. Noor, An extragradient method for general monotone variational inequalities, Adv. Nonlin. Var. Inequal. 2(1), 25-31 (1999). R. U. Verma, Nonlinear variational and constrained hemivariational inequalities involving relaxed operators, ZAMM 77(5), 387-391 (1997). R. U. Verma, Generalized pseudocontractions and nonlinear variational inequalities, Publicationes Math. Debrecen 33(1-2), 23-28 (1998). R. U. Verma, An iterative algorithm for a class of nonlinear variational inequalities involving generalized pseudocontractions, Math. Sci. Res. Hot-Line 2(5), 17-21 (1998). R. U. Verma, Strongly nonlinear quasivariational inequalities, Math. Sci. Res. Hot-Line 3(2), 11-18 (1999). R. U. Verma, A class of quasivariational inequalities involving cocoercive mappings, Adv. Nonlin. Var. Inequal. 2(2)(1999)(To appear). R. U. Verma, An extension of a class of nonlinear quasivariational inequality problems based on a projection method, Math. Sci. Res. Hot-Line 3(5), 1-10 (1999). R. U. Verma, A class of projection-contraction methods applied to monotone variational inequalities, Appl. Math. Lett. (To appear). R. U. Verma, A new class of iterative algorithms for approximation-solvability of nonlinear variational inequalities (Submitted). E. Zeidler, Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New York, 1986.