An Extension of J-Shaped Distribution with Application to Tissue Damage Proportions in Blood

Komal Shekhawat1, Vikas Kumar Sharma1
1Department of Mathematics, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahsanullah, M. and Shakil, M. (2014). A note on a characterization of J-shaped distribution by truncated moment. Article in Applied Mathematical Sciences 62, 23–35.

Alizadeh, M., Lak, F., Rasekhi, M., Ramires, T. G., Yousof, H. M. and Altun, E. (2018). The odd log-logistic Topp—Leone G family of distributions: heteroscedastic regression models and applications. Comput. Stat. 33, 3, 1217–1244.

Alzaatreh, A., Lee, C. and Famoye, F. (2013). A new method for generating families of continuous distributions. Metron 71, 63–79.

Anderson, T. W. and Ghurye, S. G. (1977). Identification of parameters by the distribution of a maximum random variable. Journal of the Royal Statistical Society. Series B (Methodological) 39, 337–342.

Basu, A. P. and Ghosh, J. K. (1980). Identifiability of distributions under competing risks and complementary risks model. Communications in Statistics - Theory and Methods9, 1515–1525.

Condino, F. and Domma, F. (2017). A new distribution function with bounded support: the reflected generalized Topp-Leone power series distribution. Metron 75, 51–68.

Consul, P. C. and Jain, G. C. (1971). On the log-gamma distribution and its properties. Statistische Hefte 12, 100–106.

Ghitany, M. E., Kotz, S. and Xie, M. (2005). On some reliability measures and their stochastic orderings for the Topp–Leone distribution. J. Appl. Stat. 32, 7, 715–722.

Ghitany, M. E., Mazucheli, J., Menezes, A. F. B. and Alqallaf, F. (2018). The unit-inverse Gaussian distribution: A new alternative to two-parameter distributions on the unit interval. Communications in Statistics - Theory and Methods 0, 1–19.

(2004). In Handbook of beta distribution and its applications. (A. K. Gupta and S Nadarajah, eds.). Marcel Dekker Inc., New York.

Gupta, R. D. and Kundu, D. (2009). Introduction of shape/ skewness parameter (s) in a probability distribution. Comput. Stat. 7, 2, 153–171.

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages. J. Stat. Methodology 6, 70–81.

Kotz, S. and Seier, E. (2007). Kurtosis of the Topp–Leone distributions. Interstat, 1–15.

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. J. Hydrol. 46, 79–88.

Mazucheli, J., Menezes, A. F. B. and Chakraborty, S. (2019). On the one parameter unit-Lindley distribution and its associated regression model for proportion data. J. Appl. Stat. 46, 700–714.

Mazucheli, J., Menezes, A. F. B. and Dey, S. (2017). Improved maximum likelihood estimators for the parameters of the unit–gamma distribution. Communications in Statistics - Theory and Methods. https://doi.org/10.1080/03610926.2017.1361993.

Mazucheli, J., Menezes, A. F. B. and Dey, S. (2018a). The unit-Birnbaum-Saunders distribution with applications. Chilean Journal of Statistics 9, 47–57.

Mazucheli, J., Menezes, A. F. B. and Ghitany, M. E. (2018b). The unit-Weibull distribution and associated inference. J. Appl. Probability Stat. 13, 1–22.

Nadarajah, S. and Kotz, S. (2003). Moments of some J-shaped distributions. J. Appl. Stat. 35, 10, 1115–1129.

Nair, N. U., Sankaran, P. and Balakrishnan, N. (2013). Quantile-based reliability analysis. Statistics for Industry and Technology. Springer, New York.

Sangsanit, Y. and Bodhisuwan, W. (2016). The Topp–Leone generator of distributions: properties and inferences. Songklanakarin. J. Sci. Technol. 38, 537–548.

Shaked, M. and Shanthikumar, J. (1994). Stochastic orders and their applications. Academic Press, Boston.

Sharma, V. K. (2018a). Bayesian analysis of head and neck cancer data using generalized inverse Lindley stress–strength reliability model. Communications in Statistics - Theory and Methods 47, 1155–1180.

Sharma, V. K. (2018b). Topp–Leone normal distribution with application to increasing failure rate data. Journal of Statistical Computation and Simulation 83, 2, 326–339.

Sharma, V. K., Singh, S. K., Singh, U. and Merovci, F. (2016). The generalized inverse Lindley distribution: A new inverse statistical model for the study of upside-down bathtub data. Communications in Statistics - Theory and Methods 45, 19, 5709–5729.

Topp, C. W. and Leone, F. C. (1995). A family of J-shaped frequency functions. J. Am. Stat. Assoc. 50, 209–219.

Zhou, M., Yang, D. W., Wang, Y. and Nadarajah, S. (2006). Some J-shaped distributions: sums, products and ratios. Newport Beach, CA, pp. 175–181.